RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Effect of Deposition Sequence on Catalytic Activity of CrOx–ZrO2–SiO2 in Nonoxidative Propane Dehydrogenation

PII
10.31857/S0044453723090054-1
DOI
10.31857/S0044453723090054
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1227-1238
Abstract
A comparison is made of CrOx–ZrO2–SiO2 catalysts (9 wt % chromium oxide based on Cr2O3); (Cr + Zr)/Si molar ratio of 0.8) synthesized using different orders of introducing components: (i) the simultaneous precipitation of all components, (ii) the deposition of CrOx on ZrO2–SiO2 via impregnation, and (iii) the co-precipitation of CrOx and ZrO2 on SiO2. The SiO2 precursors are TEOS in methods (i) and (ii), and SiO2 produced by calcination of rice husk in (iii). The catalysts are tested in the nonoxidative dehydrogenation of propane in a flow system with a fixed catalyst bed at 500–600°С. The co-precipitation of CrOx and ZrO2 ensures high efficiency of the catalysts. At 500 and 550°C, the most efficient catalyst is CrZr/SiO2 synthesized by depositing CrOx and ZrO2 on SiO2; at 600°C, the best on-stream behavior is exhibited by CrZrSi catalyst synthesized via the simultaneous precipitation of all components. SEM/EDX, XRD, H2-TPR, and Raman spectroscopy are used to show that in the catalysts synthesized via the co-precipitation of CrOx and ZrO2, these components (which form active sites) are uniformly distributed, have close contact, and are adequately dispersed, while Cr6+ is readily reduced to Cr3+ by the hydrogen contained in the reaction medium.
Keywords
неокислительное дегидрирование пропана оксиды хрома диоксид циркония диоксид кремния пропитка совместное осаждение рисовая шелуха
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Chen S., Chang X., Sun G. et al. // Chemical Society Reviews. 2021. V. 50. P. 3315.
  2. 2. Nawaz Z. //Reviews in Chemical Engineering, 2015. V. 31. P. 413.
  3. 3. Li C., Wang G. // Chemical Society Reviews. 2021. V. 50. P. 4359.
  4. 4. Huš M., Kopač D., Likozar B. // J. of Catalysis. 2020. V. 386. P. 126.
  5. 5. Otroshchenko T., Jiang G., Kondratenko V.A. et al. // Chemical Society Reviews. 2021. V. 50. P. 473.
  6. 6. Fridman V.Z., Xing R. // Industrial & Engineering Chemistry Research. 2017. V. 56. P. 7937.
  7. 7. Otroshchenko T.P., Rodemerck U., Linke D. et al. // J. of Catalysis. 2017. V. 356. P. 197.
  8. 8. Michorczyk P., Pietrzyk P., Ogonowski J. // Microporous and Mesoporous Materials. 2012. V. 161. P. 56.
  9. 9. Sattler J.J.H.B., Ruiz-Martinez J., Santillan-Jimenez E., et al. // Chemical Reviews. 2014. V. 114. P. 10613.
  10. 10. Otroshchenko T., Kondratenko V.A., Rodemerck U. et al. // J. of Catalysis. 2017. V. 348. P. 282.
  11. 11. Golubina E.V., Kaplin I.Y., Gorodnova A.V. et al. // Molecules. 2022. V. 27. 6095.
  12. 12. Adam F., Appaturi J.N., Iqbal A. // Catalysis Today. 2012. V. 190. P. 2–14
  13. 13. Furgal J.C., Lenora C.U. // Physical Sciences Reviews. 2020. V. 5. P. 20190024.
  14. 14. Azat S., Korobeinyk A.V., Moustakas K. et al. // J. of Cleaner Production. 2019. V. 217. P. 352.
  15. 15. Schlumberger C., Thommes M. // Advanced Materials Interfaces. 2021. V. 8. P. 2002181.
  16. 16. Kongwudthiti S., Praserthdam P., Tanakulrungsank W., et al. // J. of Materials Processing Technology. 2003. V. 136. P. 186.
  17. 17. Ma Y., Wang Y., Wu W. et al. // Industrial & Engineering Chemistry Research. 2021. V. 60. P. 230.
  18. 18. Wang D., Zhang C., Zhu M. et al. // ChemistrySelect. 2017. V. 2. P. 4823.
  19. 19. Esposito S., Turco M., Bagnasco G. et al. // Applied Catalysis A: General. 2010. V. 372. P. 48.
  20. 20. Ciszak C., Mermoux M., Gutierrez G. et al. // J. of Raman Spectroscopy. 2019. V. 50. P. 425.
  21. 21. Marinković Stanojević Z.V., Romčević N., Stojanović B. // J. of the European Ceramic Society. 2007. V. 27. P. 903.
  22. 22. Chakrabarti A., Gierada M., Handzlik J. et al. // Topics in Catalysis. 2016. V. 59. P. 725.
  23. 23. Wang F., Fan J.-L., Zhao Y. et al. // J. of Fluorine Chemistry. 2014. V. 166. P. 78.
  24. 24. Camposeco R., Castillo S., Nava N. et al. // Topics in Catalysis. 2020. V. 63. P. 481.
  25. 25. Hoang D.L., Lieske H. // Thermochimica Acta. 2000. V. 345. P. 93–99
  26. 26. Zhong L., Yu Y., Cai W. et al. // Physical Chemistry Chemical Physics. 2015. V. 17. P. 15036.
  27. 27. Каплин И.Ю., Локтева Е.С., Голубина Е.В. et al. // Кинетика и катализ. 2017. V. 58. P. 598.
  28. 28. Shi L., Zhu P., Yang R. et al. // Catalysis Communications. 2017. V. 89. P. 1.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library