- PII
- 10.31857/S004445372309008X-1
- DOI
- 10.31857/S004445372309008X
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 10
- Pages
- 1398-1405
- Abstract
- A mathematical analysis of the process for the preparation of high-density jet fuels of T-6 and T‑8V grades, based on hydrogenation of polycyclic aromatic (mostly bicyclic) hydrocarbons, has been performed. The process was carried out on a pilot laboratory plant using two nickel catalysts: Raney nickel and nickel on kieselguhr. The experimental data obtained for temperatures of 200–400°C and different feed space velocities were used to construct a mathematical model for catalytic hydrogenation of hydrocarbons that allows for changes in the volume of the reaction mixture. The concentrations of mono- and bicyclic aromatic hydrocarbons (initial and intermediate compounds) and naphthenes (target products) obtained within the framework of the mathematical model are in good agreement with the measured concentrations. The solution of the inverse kinetic problem made it possible to estimate the kinetic parameters of the main chemical transformations in the hydrogenation of aromatic hydrocarbons.
- Keywords
- гидрирование полициклических ароматических углеводородов никель на кизельгуре никель Ренея кинетические параметры обратная задача изменение объема реакционной смеси
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. Slayden S.W., Liebman J.F. // Chem. Rev. 2001. 101. P. 1541.
- 2. Li M., Liu D., Du H. et al. // Appl. Petrochem. Res. 2015. 5. P. 339.
- 3. Dolomatov M.Y., Burangulov D.Z., Dolomatova M.M. et al. // C – J. Carbon Res. 2022. № 8. P. 19.
- 4. Pascal R.A. // Chem. Rev. 2006. 106. 12. P. 4809.
- 5. Mojica M., Alonso J.A., Mendez F. // J. Phys. Org. Chem. 2013. V. 26. P. 526.
- 6. Sabirov D.Sh., Garipova R.R., Cataldo F. // Mol. Astrophys. 2018. 12. P. 10.
- 7. Portella G., Poater J., Bofill J.M. et al. // J. Org. Chem. 2005. 70. P. 2509.
- 8. Lukmanov T., Akhmetov A.F., Sabirov D.S. // C – J. Carbon Res. 2022. № 8. P. 61.
- 9. Sabirov D.Sh. // Comput. Theor. Chem. 2014. 1030. P. 81.
- 10. Cataldo F., García-Hernández D.A., Manchado A. // Fullerene Nanotube Carbon Nanostruct. 2015. 23. P. 760.
- 11. Cataldo F., García-Hernández D.A., Manchado A. // Fullerene Nanotube Carbon Nanostruct. 2015. 23. P. 818.
- 12. Sabirov D.Sh., Terentyev A.O., Cataldo F. // Comput. Theor. Chem. 2016. 1081. P. 44.
- 13. Hossain M.M., Thakur Kh., Talipov M.R. et al. // Org. Lett. 2021. 23. 13. P. 5170.
- 14. Ахметов А.Ф., Ахметов А.В., Загидуллин Ш.Г., Шайжанов Н.С. // Башкирский химический журнал. 2018. Т. 25. № 1. С. 96.
- 15. Шайжанов Н.С., Загидуллин Ш.Г., Ахметов А.В. // Башкирский хим. журн. 2014. Т. 21. № 2. С. 94.
- 16. Ахметов А.Ф., Ахметов А.В., Шайжанов Н.С., Загидуллин Ш.Г. // Там же. 2017. Т. 24. № 1. С. 29.
- 17. Зайнуллин Р.З., Коледина К.Ф., Ахметов А.Ф., Губайдуллин И.М. // Кинетика и катализ. 2017. Т. 58. № 3. С. 292.
- 18. Коледина К.Ф., Губайдуллин И.М. // Журн. физ. химии. 2016. Т. 90. № 5. С. 671.
- 19. Коледина К.Ф., Коледин С.Н., Щаднева Н.А., Губайдуллин И.М. // Там же. 2017. Т. 91. № 3. С. 422.
- 20. Коледина К.Ф., Губайдуллин И.М., Коледин С.Н. и др. // Журн. физ. химии. 2019. Т. 93. № 11. С. 1668.
- 21. Димитров В.И. Простая кинетика. Новосибирск: Наука. 1982. С. 379.
- 22. Полак Л.С., Гольденберг М.Я., Левицкий А.А. Вычислительные методы в химической кинетике. М.: Наука, 1984. С. 280.
- 23. Холл Дж., Уатт Дж. Современные численные методы решения обыкновенных дифференциальных уравнений. М.: Мир, 1979. С. 312.
- 24. Raymond F.M., Bradley T.C. // Medical Physics. 2006. V. 33. № 2. P. 342.
- 25. Turanyi T., Nagy T., GyZsely I. et al. // Int. J. Chem. Kinet. 2012. V. 44. № 5. P. 284.
- 26. Зайнуллин Р.З., Коледина К.Ф., Губайдуллин И.М. и др. // Кинетика и катализ. 2020. Т. 61. № 4. С. 550.
- 27. Koledina K., Koledin S., Karpenko A. et al. // J. Math. Chem. 2019. V. 57. I. 2. P. 484.