RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Database of Intermediates of Enzyme-Catalyzed Chemical Reactions ENIAD

PII
10.31857/S0044453723090133-1
DOI
10.31857/S0044453723090133
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1324-1328
Abstract
Enzymatic catalysis is characterized by multistage chemical reactions from enzyme-substrate complexes to products. In a number of cases, in the course of experimental studies, it is possible to characterize the structures and properties of intermediates of complex chemical reactions in proteins. The use of modern computer simulation methods makes it possible to significantly supplement the knowledge of the mechanisms of enzymatic catalysis reactions and provide detailed data on reaction intermediates, including structures with atomic resolution. The materials accumulated to date make it possible to create a unique dat-abase called ENIAD (ENzyme-In-Action-Databank). The article describes the principles of building the ENIAD database, as well as a multiplatform web interface for accessing data (https://lcc.chem.msu.ru/eniad/).
Keywords
ферментативный катализ реакционные интермедиаты молекулярное моделирование базы данных
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Варфоломеев С.Д. Химическая энзимология. М.: Научный мир, 2019. С. 543.
  2. 2. Berman H.M., Henrick K., Nakamura H. // Nature Structural Biology. 2003. V. 10. № 12. P. 980. https://doi.org/10.1038/nsb1203-980
  3. 3. Holliday G.L., Andreini C., Fischer J.D. et al. // Nucleic Acids Res. 2012. V. 40. P. D783.https://doi.org/10.1093/nar/gkr799
  4. 4. Nagano N., Nakayama N., Ikeda K. et al. // Ibid. 2015. V. 43. P. D453.https://doi.org/10.1093/nar/gku946
  5. 5. Ribeiro A.J.M., Holliday J.L., Furnham N. et al. // Ibid. 2018. V. 46. P. D618.https://doi.org/10.1093/nar/gkx1012
  6. 6. Furnham N., Holliday G.L., de Beer T.A.P. et al. // Ibid. 2014. V. 42. P. D485.https://doi.org/10.1093/nar/gkt1243
  7. 7. Warshel A., Levitt M. // J. Mol. Biol. 1976. V. 103. P. 227. https://doi.org/10.1016/0022-2836 (76)90311-9
  8. 8. Senn H.M., Thiel W. // Angew. Chemie Int. Ed. 2009. V. 48. P. 1198. https://doi.org/10.1002/anie.200802019
  9. 9. Grigorenko B.L., Kots E.D., Nemukhin A.V. // Org. Biomol. Chem. 2019. V. 17. P. 4879.https://doi.org/10.1039/C9OB00463G
  10. 10. Khrenova M.G., Grigorenko B.L., Kolomeisky A.B. et al. // J. Phys. Chem. B. 2015. V. 119. № 40. P. 12838.https://doi.org/10.1021/acs.jpcb.5b07238
  11. 11. Khrenova M.G., Kots E.D., Nemukhin A.V. // Ibid. 2016. V. 120. № 16. P. 3873.https://doi.org/10.1021/acs.jpcb.6b03363
  12. 12. Docker, Inc. https://www.docker.com, 2019.
  13. 13. The Linux Foundation. https://kubernetes.io, 2019.
  14. 14. Brekhov A.T., Mironov V.A., Moskovsky A.A. et al. // J. Phys.: Conf. Ser. 2019. V. 1392. P. 012049.https://doi.org/10.1088/1742-6596/1392/1/012049
  15. 15. PostgreSQL Global Development Group. https://www.postgresql.org, 2019.
  16. 16. Latino D.A.R.S., Aires-de-Sousa J. // Chemoinf. and Comput. Chem. Biol. 2011. V. 672. P. 325.https://doi.org/10.1007/978-1-60761-839-3_13
  17. 17. O’Boyle N.M., Holliday G.L., Almonacid D.E. et al. // J. Mol. Biol. 2007. V. 368. P. 1484.https://doi.org/10.1016/j.jmb.2007.02.065
  18. 18. Almonacid D.E., Babbitt P.C. // Curr. Opin. Chem. Biol. 2011. V. 15. P. 435.https://doi.org/10.1016/j.cbpa.2011.03.008
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library