RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Some Features of Quantitative Analysis of Surface Compounds by Laser Desorption Mass Spectrometry

PII
10.31857/S0044453723090169-1
DOI
10.31857/S0044453723090169
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1336-1342
Abstract
The results of quantitative analysis of widely used surface samples are shown. Corrosion damage to copper and steel surfaces can be analyzed quantitatively using cobalt chloride as the internal standard. The study also demonstrates the feasibility of comparative quantitative analysis of blue ink using methylene blue homologues as standards. When conducting quantitative analysis on surfaces with inhomogeneous morphology, it has been observed that direct analysis is not possible because of uneven ionization of the sample. It has been found that when analyzing such surfaces, it is necessary to exclude points with a low signal-to-noise ratio from consideration. The work highlights the extensive possibilities of utilizing quantitative analysis in mass spectrometric visualization of the surface. The work is aimed at demonstrating the capabilities of the laser desorption mass spectrometric method for analyzing the surfaces of various materials, which will make this method universal for searching for a wide range of contaminants on the surface of materials of various nature.
Keywords
лазерная десорбция масс-спектрометрия сажа ПМ-75 хлорид кобальта коррозия
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Picó Y. // Curr. Opin. Environ. Sci. 2020. T. 18. № 1. C. 47.
  2. 2. Feider C.L., Krieger A., DeHoog R.J., Eberlin L.S. // Anal. chem. 2019. T. 91. № 7. C. 4266.
  3. 3. Ural N. Open Geosci. 2021. T. 13. № 4. C. 197.
  4. 4. Khan H., Yerramilli A.S., D’Oliveira A. et al. // Can. J. Chem. Eng. 2020. T. 98. № 6. C. 1255.
  5. 5. Wójtowicz A., Wietecha-Posłuszny R. // Appl. Phys. A. 2019. T. 125. № 1. C. 1.
  6. 6. Hong Y., Birse N., Quinn B. et al. // J. Food Sci. 2022. T. 6. № 9. C. 14.
  7. 7. Hou T.Y., Chiang-Ni C., Teng S.H.J. // Food Drug Anal. 2019. T. 27. № 2. C. 404.
  8. 8. Welker M., Van Belkum A., Girard V. et al. // Expert Rev. Proteomics. 2019. T. 16. № 9. C. 695.
  9. 9. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. T. 92. № 3. C. 1227.
  10. 10. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. T. 95. № 11. C. 2319.
  11. 11. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Ibid. 2022. T. 96. № 10. C. 2215.
  12. 12. Minenkova I.V., Pytskii I.S., Buryak A.K. // Prot. Met. Phys. Chem. Surf. 2022. T. 58. № 6. C. 605.
  13. 13. Schulz S., Becker M., Groseclose M.R. et al. // Curr. Opin. Biotechnol. 2019. T. 55. № 2. C. 51.
  14. 14. Hendel K.K., Bagger C., Olesen U.H. et al. // Drug deliv. 2019. T. 26. № 1. C. 244.
  15. 15. Morosi L., Matteo C., Meroni M. et al. // Talanta. 2022. T. 237. № 1. C. 122918.
  16. 16. Iartsev S.D., Pytskii I.S., Zenkevich I.G., Buryak A.K. // J. Anal. Chem. 2017. T. 72. № 6. C. 624.
  17. 17. Ibrahim S., Froehlich B.C., Aguilar-Mahecha A. et al. // Anal. Chem. 2020. T. 92. № 18. C. 12407.
  18. 18. Rzagalinski I., Volmer D.A. et al. Biochim. Biophys. Acta Proteins Proteom. 2017. T. 1865. № 11. C. 726.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library