RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Hydrogenation of S6-C60(CF3)12

PII
10.31857/S0044453723090200-1
DOI
10.31857/S0044453723090200
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 9
Pages
1297-1311
Abstract
The first results of the hydrogenation of S6-symmetric trifluoromethylfullerene C60(CF3)12 in two types of reactions were reported: (1) high-temperature radical hydrogenation with 9,10-dihydroanthracene and (2) nucleophilic hydrogenation with sodium tetraborohydride under mild conditions. The high-temperature radical hydrogenation of S6-C60(CF3)12 is accompanied by partial elimination of CF3 groups and leads to the formation of a complex mixture of products of a composition C60(CF3)8–12H18–22. During the hydrogenation of NaBH4 under mild conditions, selective formation of the hydride C60(CF3)12H12 was recorded by mass spectroscopy. A kinetic analysis of the sequential nucleophilic hydrogenation of S6-C60(CF3)12 was performed, using quantum-chemical modeling at the level of density functional theory, under the assumption of linear correlation between the activation energy and the enthalpy of elementary steps of the same type. The isomeric composition was predicted for the series of anionic intermediates C60(CF3)12H−2n−12−1− and their protonation products C60(CF3)12H2n, where n = 1–6. The hydrogenation of S6-C60(CF3)12 should lead to the formation of the thermodynamically and kinetically most stable product ortho-S6-C60(CF3)12H12, in which all hydrogen atoms are located in neighboring positions near the CF3 groups, forming together with them a near-equatorial belt of 24 addends while retaining the triphenylene fragments at two opposite poles. The average bond dissociation energy BDE(C–H) in ortho-S6-C60(CF3)12H12 is 298 kJ mol–1, which is approximately 20 kJ mol–1 higher than the BDE(C–H) of known fullerene hydrides C60H18 and C60H36 (PBE0/def2-SVP).
Keywords
фуллерен гидрирование перенос атома водорода нуклеофильное гидрирование трифторметил теория функционала плотности корреляционные уравнения линейные соотношения свободных энергий энергия диссоциации связи наноуглерод наносферы
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Гольдшлегер Н.Ф., Моравский А.П. // Успехи химии. 1997. Т. 66. № 4. С. 353.
  2. 2. Nossal J., Saini R.K., Alemany L.B. et al. // Eur. J. Org. Chem. 2001. P. 4167.
  3. 3. Taylor R. // J. Fluorine Chem. 2004. V. 125. P. 359.
  4. 4. Горюнков А.А., Овчинникова Н.С., Трушков И.В. и др. // Успехи химии. 2007. Т. 76. С. 323.
  5. 5. Troyanov S.I., Kemnitz E. // Curr. Org. Chem. 2012. V. 16. P. 1060.
  6. 6. Troyanov S.I., Dimitrov A., Kemnitz E. // Angew. Chem. Int. Ed. 2006. V. 45. P. 1971.
  7. 7. Troyanov S.I., Kemnitz E. // Mendeleev Commun. 2008. V. 18. P. 27.
  8. 8. Berseth P.A., Harter A.G., Zidan R. et al. // Nano Lett. 2009. V. 9. № 4. P. 1501.
  9. 9. Scheicher R.H., Li S., Araujo C.M. et al. // Nanotechnology. 2011. V. 22. № 33. P. 335401.
  10. 10. Броцман В.А., Луконина Н.С., Горюнков А.А. // Изв. АН. Сер. хим. 2023. Т. 72. № 1. С. 20.
  11. 11. Rybalchenko A.V., Magdesieva T.V., Brotsman V.A. et al. // Electrochim. Acta. 2015. V. 174. P. 143.
  12. 12. Bogdanov V.P., Semivrazhskaya O.O., Belov N.M. et al. // Chem. Eur. J. 2016. V. 22. P. 15485.
  13. 13. Brotsman V.A., Bogdanov V.P., Rybalchenko A.V. et al. // Chem. Asian J. 2016. V. 11. № 13. P. 1945.
  14. 14. Powell W.H., Cozzi F., Moss G.P. et al. // Pure Appl. Chem. 2002. V. 74. P. 629.
  15. 15. Duan Y.Y., Shi L., Sun L.Q. et al. // Int. J. Thermophys. 2000. V. 21 (2). P. 393.
  16. 16. Banfi L., Narisano E., Riva R. et al. // Encyclopedia of Reagents for Organic Synthesis. Chichester, UK: John Wiley & Sons, Ltd, 2014. P. 1.
  17. 17. Rackers J.A., Wang Z., Lu C. et al. // J. Chem. Theory Comput. 2018. V. 14. № 10. P. 5273.
  18. 18. Granovsky A.A. Firefly v. 8.2.0 (Formerly PC GAMESS). 2016. http://classic.chem.msu.su/gran/firefly/index.html
  19. 19. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347.
  20. 20. Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
  21. 21. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  22. 22. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  23. 23. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  24. 24. Ignat’eva D.V., Goryunkov A.A., Ioffe I.N. et al. // J. Phys. Chem. A. 2013. V. 117. P. 13009.
  25. 25. Romanova N.A., Papina T.S., Luk’yanova V.A. et al. // J. Chem. Thermodyn. 2013. V. 66. P. 59.
  26. 26. Tebbe F.N., Harlow R.L., Chase D.B. et al. // Science. 1992. V. 256. P. 822.
  27. 27. Pimenova S.M., Melkhanova S.V., Kolesov V.P. et al. // J. Phys. Chem. B. 2002. V. 106. P. 2127.
  28. 28. Papina T., Luk’yanova V., Troyanov S. et al. // Russ. J. Phys. Chem. A. 2007. V. 81. P. 159.
  29. 29. Rüchardt C., Gerst M., Ebenhoch J. et al. // Angew. Chem. Int. Ed. 1993. V. 32. P. 584.
  30. 30. Darwish A.D., Avent A.G., Taylor R. et al. // J. Chem. Soc., Perkin Trans. 2. 1996. P. 2051.
  31. 31. Gakh A.A., Romanovich A.Y., Bax A. // J. Am. Chem. Soc. 2003. V. 125. № 26. P. 7902.
  32. 32. Rüchardt C., Gerst M., Nölke M. // Angew. Chem. Int. Ed. Engl. 1992. V. 31. № 11. P. 1523.
  33. 33. Wang G.-W., Li Y.-J., Li F.-B. et al. // Lett. Org. Chem. 2005. V. 2. P. 595.
  34. 34. Markov V.Y., Borschevsky A.Y., Sidorov L.N. // Int. J. Mass Spectrom. 2012. V. 325–327. P. 100.
  35. 35. Khatymov R.V., Markov V.Y., Tuktarov R.F. et al. // Ibid. 2008. V. 272. P. 119.
  36. 36. Khatymov R.V., Tuktarov R.F., Markov V.Y. et al. // JETP Letters. 2013. V. 96. P. 659.
  37. 37. Romanova N.A., Tamm N.B., Markov V.Y. et al. // Mendeleev Commun. 2012. V.22. P. 297.
  38. 38. Kosaya M.P., Yankova T.S., Rybalchenko A.V. et al. // J. Phys. Chem. A. 2021. V. 125. P. 7876.
  39. 39. Lavrent'eva O.N., Romanova N.A. // Abstracts of Invited Lectures & Contributed Papers. St. Petersburg, Russia, 2015. P. 77.
  40. 40. Çelikkan H., Şahin M., Aksu M.L. et al. // Int. J. Hydrog. Energy. 2007. V. 32. № 5. P. 588.
  41. 41. Spielmann H.P., Wang G.-W., Meier M.S. et al. // J. Org. Chem. 1998. V. 63. P. 9865.
  42. 42. Spielmann H.P., Weedon B.R., Meier M.S. // Ibid. 2000. V. 65. P. 2755.
  43. 43. Clare B.W., Kepert D.L. // J. Mol. Struct. Theochem. 1994. V. 315. P. 71.
  44. 44. Clare B.W., Kepert D.L. // Ibid. 2003. V. 621. P. 211.
  45. 45. Clare B.W., Kepert D.L. // Ibid. 2003. V. 622. P. 185.
  46. 46. Kepert D.L., Clare B.W. // Coord. Chem. Rev. 1996. V. 155. P. 1.
  47. 47. Clare B.W., Kepert D.L. // J. Mol. Struct. Theochem. 1994. V. 303. P. 1.
  48. 48. Boltalina O.V., Markov V.Y., Taylor R. et al. // Chem. Commun. 1996. V. 22. P. 2549.
  49. 49. Clare B.W., Kepert D.L. // J. Mol. Struct. 2001. V. 536. P. 99.
  50. 50. Boltalina O.V., Markov V.Y., Troshin P.A., et al. // Angew. Chem. Int. Ed. 2001. V. 40. № 4. P. 787.
  51. 51. Popov A.A., Goryunkov A.A., Goldt I.V. et al. // J. Phys. Chem. A. 2004. V. 108. P. 11449.
  52. 52. Shustova N.B., Mazej Z., Chen Y.-S. et al. // Angew. Chem. Int. J. 2010. V. 49. P. 812.
  53. 53. Boltalina O.V., Goryunkov A.A., Markov V.Y. et al. // Int. J. Mass Spectrom. 2003. V. 228. P. 807.
  54. 54. Lier G.V., Cases M., Ewels C.P. et al. // J. Org. Chem. 2005. V. 70. P. 1565.
  55. 55. Ewels C.P., Van Lier G., Geerlings P. et al. // J. Chem. Inf. Model. 2007. V. 47. № 6. P. 2208.
  56. 56. Dorozhkin E.I., Ignat’eva D.V., Tamm N.B. et al. // Chem. Eur. J. 2006. V. 12. P. 3876.
  57. 57. Dorozhkin E.I., Goryunkov A.A., Ioffe I.N. et al. // Eur. J. Org. Chem. 2007. P. 5082.
  58. 58. Belov N.M., Apenova M.G., Rybalchenko A.V. et al. // Chem. Eur. J. 2014. V. 20. P. 1126.
  59. 59. Tamm N.B., Fritz M.A., Romanova N.A. et al. // ChemistrySelect. 2022. V. 7. № 44. https://doi.org/10.1002/slct.202202214
  60. 60. Tamm N.B., Fritz M.A., Romanova N.A. et al. // ChemistrySelect. 2022. V. 7. № 19. https://doi.org/10.1002/slct.202200968
  61. 61. Романова Н.А., Фритц М.А., Чанг К. и др. // Изв. АН. Сер. хим. 2014. P. 2657.
  62. 62. Romanova N.A., Fritz M.A., Chang K. et al. // Chem. Eur. J. 2013. V. 19. P. 11707.
  63. 63. Troyanov S.I., Goryunkov A.A., Dorozhkin E.I. et al. // J. Fluor. Chem. 2007. V. 128. P. 545.
  64. 64. Samokhvalova N.A., Khavrel P.A., Markov V.Y. et al. // Eur. J. Org. Chem. 2009. P. 2935.
  65. 65. Kosaya M.P., Rybalchenko A.V., Lukonina N.S. et al. // Chem. Asian J. 2018. V. 13. № 15. P. 1920.
  66. 66. Khavrel P.A., Serov M.G., Petukhova G.G. et al. // J. Fluor. Chem. 2020. P. 109598.
  67. 67. Apenova M.G., Semivrazhskaya O.O., Borkovskaya E.V. et al. // Chem. Asian J. 2015. V. 10. P. 1370.
  68. 68. Ovchinnikova N.S., Goryunkov A.A., Khavrel P.A. et al. // Dalton Trans. 2011. V. 40. P. 959.
  69. 69. Wigfield D.C. // Tetrahedron. 1979. V. 35. № 4. P. 449.
  70. 70. Bergosh R.G., Meier M.S., Laske Cooke J.A. et al. // J. Org. Chem. 1997. V. 62. P. 7667.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library