RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Investigation of the Spectra of Electronic Transitions in Small Clusters of the Pigment Yellow 3

PII
10.31857/S0044453723100059-1
DOI
10.31857/S0044453723100059
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 10
Pages
1447-1456
Abstract
Electronic absorption spectra were calculated in the visible region for clusters of the pigment Yellow 3 that comprise one, two, and four molecules. The geometry was optimized by the PBEh-3c and B3LYP-D4/def2-SVPD methods. The results obtained by the B3LYP-D4/def2-SVPD method correlate best with the experimental data. The spectral characteristics were calculated by the TD-DFT and sTD-DFT methods with the PBE0 functional and the def2-SVPD basis set. By analyzing the natural transition orbitals (NTOs) and changing the electron density during the formation of excited states of the studied clusters, it was shown that the main contribution to the spectral lines in the visible range is made by the density transfer from the aromatic rings to the nitro group and the conjugated bond system in the center of the molecule. In this case, for the crystalline state of matter, all excited states are delocalized, and the main contribution to the intermolecular transfer of the electron density is made by the formation of excitons.
Keywords
пигмент желтый светопрочный 2 “З” спектр в видимой области TD-DFT sTD-DFT молекулярный кластер
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Лаптев Н.Г., Богословский А.М. Химия красителей. М.: Химия, 1970. 424 с.
  2. 2. Whitaker A. // Zeitschrift für Kristallographie – Crystalline Materials. 1983. V. 163. P. 19. https://doi.org/10.1524/zkri.1983.163.14.19
  3. 3. Венкатараман К. Химия синтетических красителей. Т. 3. Л.: Химия, 1974. 464 с.
  4. 4. Венкатараман К. Химия синтетических красителей. Т. 4. Л.: Химия, 1975. 488 с.
  5. 5. Ибраев Н.Х., Селиверстова Е.В., Артюхов В.Я. // Изв. вузов. Физика. 2014. Т. 57. № 9. С. 9.
  6. 6. Whitaker A. // J. of the Society of Dyers and Colourists. 1983. V. 99. P. 121.
  7. 7. Grimme S., Brandenburg J.G., Bannwarth C., Hansen A. // J. of Chemical Physics. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
  8. 8. Lee C., Yang W., Parr R.G. // Phys. Rev B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  9. 9. Caldeweyher E., Ehlert S., Hansen A. // J. of Chemical Physics. 2019. V. 150. № 15. P. 154122. https://doi.org/10.1063/1.5090222
  10. 10. Rappoport D., Furche F. // Ibid. 2010. V. 133. № 13. P. 134105-11. https://doi.org/10.1063/1.3484283
  11. 11. Runge E., Gross E.K.U. // Physical Review Letters. 1984. V. 52. № 12. P. 997. https://doi.org/10.1103/physrevlett.52.997
  12. 12. Bannwarth C., Grimme S. // Computational and Theoretical Chemistry. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
  13. 13. De Wergifosse M., Seibert J., Grimme S. // The J. of Chemical Physics. 2020. V. 153. № 8. P. 084116. https://doi.org/10.1063/5.0020543
  14. 14. Perdew J.B., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982. https://doi.org/10.1063/1.472933
  15. 15. Jacquemin D., Perpète E.A., Scuseria G.E. et al. // J. of Chemical Theory and Computation. 2008. V. 4. № 1. P. 123. https://doi.org/10.1021/ct700187z
  16. 16. Jacquemin D., Planchat A., Adamo C., Mennucci B. // J.of Chemical Theory and Computation. 2012. V. 8. № 7. P. 2359. https://doi.org/10.1021/ct300326f
  17. 17. Jacquemin D., Perpète E.A., Ciofini I., Adamo C. // Theoretical Chemistry Accounts. 2008. V. 120. № 4–6. P. 405. https://doi.org/10.1007/s00214-008-0424-9
  18. 18. Han J., Liu X., Sun C. et al. // RSC Advances. 2018. V. 8. № 52. P. 29589. https://doi.org/10.1039/c8ra05812a
  19. 19. Tsai H.-H.G., Sun H.-L.S., Tan C.-J. // The J. of Physical Chemistry A. 2010. V. 114. № 12. P. 4065. https://doi.org/10.1021/jp100022y
  20. 20. Mahamiya V., Bhattacharyya P., Shukla A. // ACS Omega. 2022. V. 7. P. 48261. https://doi.org/10.1021/acsomega.2c06373
  21. 21. Rappoport D., Furche F. // The Journal of Chemical Physics. 2010. V. 133. № 13. P. 134105. https://doi.org/doi:10.1063/1.3484283.
  22. 22. Mera-Adasme R., Xu W.-H., Sundholm D., Mendizabal F. // Physical Chemistry Chemical Physics. 2016. V. 18. № 40. P. 27877. https://doi.org/doi:10.1039/c6cp04627d.
  23. 23. Neese F. // WIREs Comput Mol Sci. 2017. V. 8. № 1. P. e1327. https://doi.org/10.1002/wcms.1327
  24. 24. Allouche A.R. // J. of Computational Chemistry. 2011. V. 32. P. 174. https://doi.org/10.1002/jcc.21600
  25. 25. Berraud-Pache R., Neese F., Bistoni G., Izsák R. // J. Chem. Theory Comput. 2020. V. 16. № 1. P. 564. https://doi.org/10.1021/acs.jctc.9b00559
  26. 26. Martin R.L. // The J. of  Chemical Physics. 2003. V. 118. № 11. P. 4775. https://doi.org/10.1063/1.1558471
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library