RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Preparation of Polymetal Powder Systems Fe–Ni–Co–Al in Aqueous Solutions and Their Physical Characteristics

PII
10.31857/S0044453723100072-1
DOI
10.31857/S0044453723100072
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 10
Pages
1421-1429
Abstract
The possibility of preparation of a polymetallic dispersed Fe–Ni–Co–Al system in aqueous solutions by a redox process between iron(III), nickel(II), cobalt(II) ions and aluminum microparticles in aqueous solutions is shown. In this case, a structure is formed in the aqueous solution, which, from the standpoint of the phase composition, is a mechanical mixture of elemental metals. It has been found that the synthesized Fe–Ni–Co–Al system consists of metallic aluminum particles coated with elemental metals (iron, nickel, and cobalt) with a minimum content of the oxide phase. Additional HF modification of the studied sample of the polymetallic system in low pressure inductive discharge plasma leads to the formation of a number of intermetallic compounds, mainly CoFe (~60%) and FeNi (~15%), and also ensures particle spheroidization. The resulting intermetallic powder composition is potentially suitable for use in additive manufacturing technologies.
Keywords
алюминий металлы семейства железа плазма интерметаллиды
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Lasalmonie A. // Intermetallics. 2006. V. 14. № 10–11. P. 1123. https://doi.org/10.1016/j.intermet.2006.01.064
  2. 2. Liu W., Dupont J.N. // Metall. Mater. Trans. A. 2003. V. 34. P. 2633.https://doi.org/10.1007/s11661-003-0022-3
  3. 3. Chaudhary V., Nartu M.S.K.K.Y., Mantri S.A. et al. // J. Alloys Compd. 2020. V. 823. 153817. https://doi.org/10.1016/j.jallcom.2020.153817
  4. 4. Paganotti A., Bessa C.V.X., Silva C.C.S. et al. // Mater. Chem. Phys. 2021. V. 261. 124215. https://doi.org/10.1016/j.matchemphys.2020.124215
  5. 5. Tanaka Y., Kainuma R., Omori T., Ishida K. // Mater. Today: Proc. 2015. V. 2. P. S485. https://doi.org/10.1016/j.matpr.2015.07.333
  6. 6. Tan X., Tang Y., Tan Y. et al. // Intermetallics. 2020. V. 126. 106898. https://doi.org/10.1016/j.intermet.2020.106898
  7. 7. LiP., WangA., Liu C.T. // Ibid. 2017. V. 87. P. 21. https://doi.org/10.1016/j.intermet.2017.04.007
  8. 8. Agustianingrum M.P., Yoshida S., Tsuji N., Park N. // J. Alloys Compd. 2019. V. 781. P. 866. https://doi.org/10.1016/j.jallcom.2018.12.065
  9. 9. Zuo T.T., Li R.B., Ren X.J., Zhang Y. // J. Magn. Magn Mater. 2014. V. 371. P. 60. https://doi.org/10.1016/j.jmmm.2014.07.023
  10. 10. Betancourt-Cantera L.G., Sánchez-De Jesús F., Bolarín-Miró A.M. et al. // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 14969. https://doi.org/10.1016/j.jmrt.2020.10.068
  11. 11. Shafi K., Gedanken A., Prozorov R. et al. // J. Mater. Res. 2000. V. 15. № 2. P. 332. https://doi.org/10.1557/JMR.2000.0052
  12. 12. Solanki V., Lebedev O.I., Seikh M.M. et al. // J. Magn. Magn. Mater. 2016. V. 420. P. 39. https://doi.org/10.1016/j.jmmm.2016.06.087
  13. 13. Csik A., Vad K., Tóth-Kádár E., László P. // Electrochem. Commun. 2009. V. 11. P. 1289. https://doi.org/10.1016/j.elecom.2009.04.027
  14. 14. Zhang Y., Ma R., Feng S. et al. // J. Magn. Magn. Mater. 2020. V. 497. 165982. https://doi.org/10.1016/j.jmmm.2019.165982
  15. 15. Gayathri A., Kiruthika S., Selvarani V. et al. // Fuel. 2022. V. 321. 124059. https://doi.org/10.1016/j.fuel.2022.124059
  16. 16. Wang Z., Cheng L., Zhang R. et al. // J. Alloys Compd. 2021. V. 857. 158249. https://doi.org/10.1016/j.jallcom.2020.158249
  17. 17. Коч К., Овидько И.А., Сил С., Вепрек С. Конструкционные нанокристаллические материалы. Научные основы и приложения / Пер. с англ. под ред. М.Ю. Гуткина. М.: Физматлит, 2012. 447 с. [Koch C., Ovid’ko I.A., Seal S., Veprek S. Structural Nanocrystalline Materials. Fundamentals and Applications. Cambridge University Press. 2007. 364 p.]
  18. 18. Дресвянников А.Ф., Колпаков М.Е. // Журн. физ. химии. 2006. Т. 80. № 2. С. 321. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Phys. Chem. A. 2006. V. 80. № 2. P. 254. https://doi.org/10.1134/S0036024406020245]
  19. 19. Дресвянников А.Ф., Колпаков М.Е., Ермолаева Е.А. // Там же. 2020. Т. 94. № 6. С. 823. [Dresvyannikov A.F., Kolpakov M.E., Ermolaeva E.A. // Ibid. A. 2020. V. 94. № 6. P. 1098. https://doi.org/10.1134/S0036024420060084]
  20. 20. Дресвянников А.Ф., Колпаков М.Е. // Журн. общ. химии. 2005. Т. 75. № 2. С. 177. [Dresvyannikov A.F., Kolpakov M.E. // Russ. J. Gen. Chem. 2005. V. 75. № 2. P. 155. https://link.springer.com/article/10.1007/s11176-005-0190-5]
  21. 21. Tseng Y.-T., Wu G.-X., Lin J.-C. et al. // J. Alloys Compd. 2021. V. 885. 160873. https://doi.org/10.1016/j.jallcom.2021.160873
  22. 22. Torabinejad V., Aliofkhazraei M., Assareh S. et al. // Ibid. 2016. V. 691. P. 841. https://doi.org/10.1016/j.jallcom.2016.08.329
  23. 23. Hessami S., Tobias C.W. // J. Electrochem. Soc. 1989. V. 136. P. 3611.https://doi.org/10.1149/1.2096519
  24. 24. Bertazzoli R., Pletcher D. // Electrochim. Acta. 1993. V. 38. № 5. P. 671. https://doi.org/10.1016/0013-4686 (93)80237-T
  25. 25. Martinez-Blanco D., Gorria P., Blanco J.A. et al. // J. Phys.: Condens. Matter. 2008. V. 20. P. 335213. https://doi.org/10.1088/0953-8984/20/33/335213
  26. 26. Дресвянников А.Ф., Колпаков М.Е., Миронов М.М. // Физика и химия обраб. матер. 2010. № 3. С.58. [Dresvyannikov A.F., Kolpakov M.E., Mironov M.M. // Inorg. Mater.: Appl. Res. 2012. V. 3. № 3. P. 193. https://doi.org/10.1134/S2075113311030075]
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library