- PII
- 10.31857/S0044453723100229-1
- DOI
- 10.31857/S0044453723100229
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 97 / Issue number 10
- Pages
- 1457-1463
- Abstract
- Graphdiynes (GDYs) are two-dimensional carbon nanostructures containing sp- and sp2-hybridized carbon atoms that form conjugated bonds in the linear chains connecting six-membered carbon rings. The results of scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy showed that GDYs have a uniform surface and contain conjugated –С≡С–С≡С bonds. The hydrogen-adsorption capacity of GDYs was studied, and a comparative analysis of hydrogen adsorption in GDYs, graphenes, graphene nanotubes, and graphene structures formed on zeolites was performed. The substrate on which the carbon nanostructure is formed was shown to have a significant effect on the adsorption capacity of the latter. The possibility and prospects for the synthesis of graphenes on catalysts to increase their efficiency in hydrogenation processes are considered.
- Keywords
- графдиновые наноструктуры синтез наноразмерных графдинов (ГД) исследование их морфологии строение графдина ацетиленовые связи в ГД адсорбция водорода в углеродных наноструктурах влияние морфологии и подложки
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Balaban A.T., Rentia C.C., Ciupitu E. // Rev. Roum. Chim. 1968. V. 13. P. 231.
- 2. Baughman R., Eckhardt H., Kertesz M. // J. Chem. Phys. 1987. V. 87. № 11. P. 6687.
- 3. Ivanovskii A.L. // Prog. Solid State Chem. 2013. V. 41. № 1. P. 1.
- 4. Wan W.B., Brand S.C., Pak J.J. et al. // Chem. A Eur. J. 2000. V. 6. № 11. P. 2044.
- 5. Li G.X., Li Y.L., Liu H.B. et al. // Chem. Commun. 2010. V. 46. P. 3.
- 6. Li G., Li Y., Qian X. et al. // J. Phys. Chem. C. 2011. V. 115. P. 2611.
- 7. Zhou J., Gao X., Liu R. et al. // J. Am. Chem. Soc. 2015. V. 137. № 24. P. 7596.
- 8. Yang N., Liu Y., Wen H. et al. // Nano. 2013. V. 7. № 2. P. 1504.
- 9. Huang C., Zhang S., Liu H. et al. // Nano Energy. 2015. V. 11. P. 481.
- 10. Kuang C., Tang G., Jiu T. et al. // Nano Lett. 2015. V. 15. № 4. P. 2756.
- 11. Gao X., Zhou J., Du R. et al. // Adv. Mater. 2015. https://doi.org/10.1002/adma.201504407
- 12. Li J., Xu J., Xie Z. et al. // Adv. Mater. 2018. V. 30. P. 1800548.
- 13. Si H-Y., Mao C-J., Zhou J-Y. et al. // Carbon. 2018. V. 132. P. 598.
- 14. Yao Y., Jin Z., Chen Y. et al. // Ibid. 2018. V. 129. P. 228.
- 15. Shekar S.C., Swath R.S. // Ibid. 2018. V. 126. P. 489.
- 16. Li C., Lu X., Han Y. et al. // Nano Research. 2018. V. 11. № 3. P. 1714.
- 17. Pan Y., Wang Y., Wang L. et al. // Nanoscale. 2015. V. 7. P. 2116.
- 18. Kan X., Ban Y., Wu C. et al. // ACS Appl. Mater. & Interfaces. 2018. V. 10. № 1. P. 53.
- 19. Mortazavi B., Makaremi M., Shahrokhi M. et al. // Carbon. 2018. V. 137. P. 57.
- 20. Dong Y., Zhao Y., Chen Y. et al. // J. of Materials Sci. 2018. V. 53. № 12. P. 8921.
- 21. Huoliang Gu. et al. // J. Am. Chem. Soc. 2021. V. 143. № 23. P. 8679.
- 22. Yuncheng Du. et al. // Acc. Chem. Res. 2020. V. 53. № 2. P. 459.
- 23. Yang Z. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- 24. Zuo Z., Li Y. // Joule. 2019. V. 3. P. 899.
- 25. Hui L., Xue Y., Yu H. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 10677.
- 26. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- 27. Yin C., Li J.Q., Li T.R. et al. // Adv. Funct. Mater. 2020. V. 30. https://doi.org/. 202001396.https://doi.org/10.1002/adfm
- 28. Guo J., Shi R.C., Wang R. et al. // Laser Photonics Rev. 2020. V. 14. P. 1900367.
- 29. Yan H., Yu P., Han G. et al. // Angew. Chem. Int. Ed. Engl. 2019. V. 58. P. 746.
- 30. Zhou J.Y., Xie Z.Q., Liu R. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 2632.
- 31. Lv J.X., Zhang Z.M. Wang J. et al. // WACS Appl. Mater. Interfaces. 2019. V. 32.
- 32. Zuo Z., Shang H., Chen Y. et al. // Chem. Commun. (Camb.). 2017. V. 53. P. 8074.
- 33. Li R., Sun H., Zhang Ch. et al. // Carbon. 2022. V. 188. P. 25.
- 34. Gao J., Li J., Chen Y. et al. // Nano Energy. 2018. V. 43. P. 192.
- 35. Yang Z., Zhang Y., Guo M. et al. // Comput. Mater. Sci. 2019. V. 160. P. 197.
- 36. Солдатов А.П., Бондаренко Г.Н., Сорокина Е.Ю. // Журн. физ. химии. 2015. Т. 89. № 2. С. 306. [Soldatov A.P., Bondarenko G.N., Sorokina E.Yu. // Russ. J. of Phys. Chem. A. 2015. V. 89. № 2. P. 282.]
- 37. Tuinstra R., Koenig J.L. // J. Chem. Phys. 1970. V. 53. P. 1126.
- 38. Estrade-Szwarckopf H. // Carbon. 2004. V. 42. P. 1713.
- 39. Ferrari A.C., Meyer J.C., Scardaci V. et al. // Phys. Rev. Lett. 2006. V. 97. P. 187401.
- 40. Солдатов А.П. // Журн. физ. химии. 2020. Т. 94. № 4. С. 483. [Soldatov A.P. // Russ. J. of Phys. Chem. A. 2020. V.94. № 4. P. 663.]
- 41. Солдатов А.П., Кириченко А.Н., Татьянин Е.В. // Там же. 2016. Т. 90. № 7. С. 1038.
- 42. Солдатов А.П. // Там же. 2019. Т. 93. № 3. С. 398. [Soldatov A.P. // Ibid. 2019. V. 93. №3. P. 494.]
- 43. Солдатов А.П. // Там же. 2014. Т. 88. № 7–8. С. 1207. [Soldatov A.P. // Ibid. 2014. V. 88. № 8. P. 1388.]
- 44. Солдатов А.П. // Журн. физ. химии. 2017. Т. 91. № 5. С. 897. [Soldatov A.P. // Ibid.2017. V. 91. № 5. P. 931.]
- 45. Токабе И.К. Катализаторы каталитические процессы. М.: Наука, 1993.