RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Mechanosynthesis of Sulfur-Containing Silver Halide Nanocomposites in a Dimethyl Sulfoxide Medium

PII
10.31857/S0044453723100254-1
DOI
10.31857/S0044453723100254
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 10
Pages
1471-1480
Abstract
Transformations in the S–AgNO3–NH4X–NH4NO3 (X = Cl, Br, I) system show that nanoparticles and nanocomposites with a controlled size of particles and content of components can be synthesized via mechanical treatment and adding small amounts of a liquid in which the precursors are soluble. Nanoparticles form in a dimethyl sulfoxide (DMSO) medium through conventional (continuous dissolution–crystallization) or reactive means (continuous dissolution of precursors and their reacting with subsequent crystallization of the target product), rather than by direct mechanical activation. The first version is used for synthesizing sulfur nanoparticles (nanosulfur); the second, for synthesizing silver halides. Sulfur-containing S/AgX nanocomposites with a controlled content of sulfur are synthesized mechanochemically. A predetermined content of nanosulfur in the nanocomposites is obtained via the dissolution–crystallization (recrystallization) of sulfur in DMSO inside a mechanochemical reactor. The proposed technical solution allows the synthesis of S/AgX nanocomposites through processing AgNO3, NH4X, and NH4NO3 (diluent) precursors, commercial sulfur, and small amounts of DMSO in planetary ball mills with different fittings. The water-soluble components of the product of mechanosynthesis are readily washed off.
Keywords
механосинтез сера галогениды серебра диметилсульфоксид механохимическая перекристаллизация наночастицы нанокомпозиты
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Friščić T., Childs S.L., Rizvi S.A.A., Jones W. // CrystEngComm. 2009. V. 11. № 3. P. 418. https://doi.org/10.1039/B815174A
  2. 2. Meenatchi B., Renuga V. // Chem Sci Trans. 2015. V. 4. № 2. P. 577. https://doi.org/10.7598/cst2015.1028
  3. 3. Ying P., Yu J., Su W. // Adv Synth Catal. 2021. V. 363. № 5. P. 1246. https://doi.org/10.1002/adsc.202001245
  4. 4. Zaikin P.A., Dyan O.T., Elanov I.R., Borodkin G.I. // Molecules. 2021. V. 26. № 19. P. 5756. https://doi.org/10.3390/molecules26195756
  5. 5. Kosimov A., Yusibova G., Aruväli J. et al. // Green Chem. 2022. V. 24. № 1. P. 305. https://doi.org/10.1039/D1GC03433B
  6. 6. Boldyreva E. // Chem. Soc. Rev. 2013. V. 42. № 18. P. 7719. https://doi.org/10.1039/C3CS60052A
  7. 7. Michalchuk A.A., Boldyreva E.V., Belenguer A.M. et al. // Front. Chem. 2021. V. 9. № 1. P. 685789. https://doi.org/10.3389/fchem.2021.685789
  8. 8. Boldyreva E.V. // Faraday Discuss. 2023. V. 241. № 1. P. 9. https://doi.org/10.1039/D2FD00149G
  9. 9. Matsuoka M., Danzuka K. // J. Chem. Eng. Japan. 2009. V. 42. № 6. P. 393. https://doi.org/10.1252/jcej.09we068
  10. 10. Baláž P., Achimovičová M., Baláž M. et al. // Chem. Soc. Rev. 2013. V. 42. № 18. P. 7571. https://doi.org/10.1039/C3CS35468G
  11. 11. Katsenis A., Puškarić A., Štrukil V. et al. // Nat Commun. 2015. V. 6. P. 6662. https://doi.org/10.1038/ncomms7662
  12. 12. Уракаев Ф.Х., Хан Н.В., Татыкаев Б.Б. и др. // Коллоидн. журн. 2020. Т. 82. № 1. С. 101. DOI: (Urakaev F.Kh., Khan N.V., Tatykaev B.B. et al. // Colloid Journal. 2020. V. 82. № 1. P. 76.) https://doi.org/10.1134/S1061933X2001016010.1134/S1061933X20010160https://doi.org/10.1134/S0023291220010164
  13. 13. Nieto-Castro D., Garcés-Pineda F.A., Moneo-Corcuera A. et al. // Inorg. Chem. 2020. V. 59. № 12. P. 7953. https://doi.org/10.1021/acs.inorgchem.9b03284
  14. 14. Kadja G.T.M., Suprianti T.R., Ilmi M.M. et al. // Microporous Mesoporous Mater. 2020. V. 47. P. 110550. https://doi.org/10.1016/j.micromeso.2020.110550
  15. 15. Zyryanov V.V., Petrov S.A., Ulihin A.S. // Ceram Int. 2021. V. 47. № 20. P. 29499. https://doi.org/10.1016/j.ceramint.2021.07.118
  16. 16. Zyryanov V.V. // Solid State Ionics. 2022. V. 383. P. 115987. https://doi.org/10.1016/j.ssi.2022.115987
  17. 17. Dubadi R., Huang S.D., Jaroniec M. // Materials. 2023. V. 16. № 4. P. 1460. https://doi.org/10.3390/ma16041460
  18. 18. Burkitbayev M.M., Urakaev F.Kh. // J. Mol. Liq. 2020. V. 316. P. 113886. https://doi.org/10.1016/j.molliq.2020.113886
  19. 19. Du G.-X., Xue Q., Ding H., Li Z. // Int. J. Min Process. 2015. V. 141. P. 15. https://doi.org/10.1016/j.minpro.2015.06.008
  20. 20. Lu J., Lu Z., Li X. et al. // J Clean Prod. 2015. V. 92. P. 223. https://doi.org/10.1016/j.jclepro.2014.12.093
  21. 21. Lu J., Cong X., Li Y. et al. // J. Clean Prod. 2018. V. 172. P. 1978. https://doi.org/10.1016/j.jclepro.2017.11.228
  22. 22. Kurniawan T., Muraza O., Hakeem A.S., Al-Amer A.M. // Cryst Growth Des. 2017. V. 17. № 6. P. 3313. https://doi.org/10.1021/acs.cgd.7b00295
  23. 23. de Oliveira Y.S., Oliveira A.C., Ayala A.P. // Eur J Pharm Sci. 2018. V. 114 (1March). P. 146. https://doi.org/10.1016/j.ejps.2017.11.028
  24. 24. Yang P., Li X., Li Z. et al. // ACS Sustain Chem Eng. 2022. V. 10. № 11. P. 3513. https://doi.org/10.1021/acssuschemeng.1c07869
  25. 25. Уракаев Ф.Х., Булавченко А.И., Уралбеков Б.М. и др. // Коллоидн. журн. 2016. Т. 78. № 2. С. 193. (Urakaev F.Kh., Bulavchenko A.I., Uralbekov B.M. et al. //Colloid Journal. 2016. V. 78. №. 2. P. 210.) https://doi.org/10.1134/S1061933X1602015010.1134/S1061933X16020150https://doi.org/10.7868/S0023291216020154
  26. 26. Shalabayev Zh., Baláž M., Daneu N. et al. // ACS Sustain Chem Eng. 2019. V. 7. № 15. P. 12897. https://doi.org/10.1021/acssuschemeng.9b01849
  27. 27. Шалабаев Ж.С., Уракаев Ф.Х., Балаж М. и др. Способ получения игольчатых нанокристаллов сульфида меди (II) // Патент РК нa полезную модель № 5287. Номер бюллетеня: 32. Дата бюллетеня: 14.08.2020. https://gosreestr.kazpatent.kz/Utilitymodel/DownLoadFilePdf?patentId=326616&lang=ru
  28. 28. Khan N., Baláž M., Burkitbayev M. et al. // Appl Surf Sci. 2012. V. 601. P. 154122. https://doi.org/10.1016/j.apsusc.2022.154122
  29. 29. Khan N.V., Baláž M., Burkitbayev M.M. et al. // Int. J. Biol. Chem. 2022. V. 15. № 1. P. 79. https://doi.org/10.26577/ijbch.2022.v15.i1.09
  30. 30. Уракаев Ф.Х., Буркитбаев М.М., Уралбеков Б.М., Шалабаев Ж.С. Способ получения наночастиц серы из растворов в диметилсульфоксиде // Евразийское патентное ведомство, Патент № 033075. Номер бюллетеня – 2019-08, 2019.08.30. https://www.eapo.org/ru/publications/publicat/viewpubl.php?id=033075http://www.eapatis.com/Data/EATXT/eapo2019/PDF/201700540.pdf
  31. 31. Urakaev F.Kh., Burkitbayev M.M., Khan N.V. // Int. J. Biol. Chem. 2022. V. 15. № 2. P. 54. https://doi.org/10.26577/ijbch.2022.v15.i2.09
  32. 32. Буркитбаев М.М., Хан Н.В., Мадикасимова М.С. и др. Способ получения серосодержащих нанокомпозитов // Патент РК нa полезную модель № 5241. Номер бюллетеня: 30. 30.07.2020. https://gosreestr.kazpatent.kz/Utilitymodel/DownLoadFilePdf?patentId=325175&lang=ru
  33. 33. Urakaev F.Kh. // Mendeleev Commun. 2012. V. 22. № 4. P. 215. https://doi.org/10.1016/j.mencom.2012.06.016
  34. 34. Urakaev F.Kh. // Mendeleev Commun. 2016. V. 26. № 6. P. 546. https://doi.org/10.1016/j.mencom.2016.11.030
  35. 35. LeBel R.G., Goring D.A.I. // J. Chem. Eng. Data. 1962. V. 7. № 1. P. 100–101.https://doi.org/10.1021/je60012a032
  36. 36. Ellson R., Stearns R., Mutz M. et al. // Comb Chem High Throughput Screen. 2005. V. 8. № 6. P. 489. https://doi.org/10.2174/1386207054867382
  37. 37. Waybright T.J., Britt J.R., McCloud T.G. // J. Biomol. Screen. 2009. V. 14. № 6. P. 708. https://doi.org/10.1177/1087057109335670
  38. 38. Rabiei M., Palevicius A., Dashti A. et al. // Materials (Basel). 2021. V. 14. № 11. P. 2949 . https://doi.org/10.3390/ma14112949
  39. 39. Himabindu B., Latha Devi N.S.M.P., Rajini Kanth B. // Materials Today: Proceedings. 2021. V. 47. № 14. P. 4891. https://doi.org/10.1016/j.matpr.2021.06.256
  40. 40. Tirpude M.P., Tayade N.T. Frustrate Microstructures Composed PbS Cluster’s Size Perspective from XRD by Variant Models of Williamson-Hall plot method // Preprint. 2022. 25 April, 36 p. https://doi.org/10.21203/rs.3.rs-1586320/v1
  41. 41. Assis M., Groppo Filho F.C., Pimentel D.S. et al. // Chemistry Select. 2020. V. 5. № 15. P. 4655. https://doi.org/10.1002/slct.202000502
  42. 42. Nims C., Cron B., Wetherington M. et al. // Sci Rep-UK. 2019. V. 9. № 1. P. 7971 . https://doi.org/10.1038/s41598-019-44353-6
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library