RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Parametric Evaluation of the Energy of Tetrel Bonds in Complexes of Tetrahedral Molecules with Ammonia and Halide Anions

PII
10.31857/S0044453723110043-1
DOI
10.31857/S0044453723110043
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1611-1619
Abstract
The electronic properties of weak and strong tetrel bonds (TtBs) formed by the elements of the carbon subgroup Tt = C, Si, Ge, Sn, Pb, which provide their subatomic electrophilic site for noncovalent interactions, have been studied. Generalized quantitative models for evaluating the energy of tetrel bonds were obtained for a large sample of molecular complexes formed by halide anions or ammonia molecule with tetrahedral molecules used as an example. The replacement of the nucleophilic fragment in the complexes leads to different trends for the dependences of the interaction energy on the electronic characteristic of the bond. The minimum of the electrostatic potential on the line of the tetrel bond proved to be the most universal factor suitable for quantitative comparison of both weak and relatively strong bonds within a single parametric model.
Keywords
тетрельная связь электронная плотность электростатический потенциал потенциал действующий на электрон в молекуле
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
2

References

  1. 1. Politzer P., Murray J.S. // Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta). 2002. V. 108. № 3. P. 134.
  2. 2. Bartashevich E.V., Matveychuk Y.V., Mukhitdinova S.E. et al. // Theor. Chem. Acc. 2020. V. 139. № 2. P. 26.
  3. 3. Legon A.C. // Phys. Chem. Chem. Phys. 2017. V. 19. № 23. P. 14884.
  4. 4. Alkorta I., Elguero J., Frontera A. // Crystals. 2020. V. 10. № 3. P. 180.
  5. 5. Grabowski S.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1824.
  6. 6. Daolio A., Scilabra P., Terraneo G. et al. // Coord. Chem. Rev. 2020. V. 413. P. 213265.
  7. 7. Scilabra P., Kumar V., Ursini M. et al. // J. Mol. Model. 2018. V. 24. № 1. P. 37.
  8. 8. Scheiner S. // J. Phys. Chem. A. 2018. V. 122. № 9. P. 2550.
  9. 9. Hou M., Liu Z., Li Q. // Int. J. Quantum Chem. 2020. V. 120. № 15. P. e26251.
  10. 10. Scheiner S. // Phys. Chem. Chem. Phys. 2021. V. 23. № 10. P. 5702.
  11. 11. Zierkiewicz W., Michalczyk M., Scheiner S. // Molecules. 2018. V. 23. № 6. P. 1416.
  12. 12. Grabowski S. // Molecules. 2018. V. 23. № 5. P. 1183.
  13. 13. Scheiner S. // Ibid. 2018. V. 23. № 5. P. 1147.
  14. 14. Liu M., Li Q., Cheng J. et al. // J. Chem. Phys. 2016. V. 145. № 22. P. 224310.
  15. 15. Frontera A., Bauzá A. // Chem. – A Eur. J. 2018. V. 24. № 62. P. 16582.
  16. 16. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. 533 с.
  17. 17. Bader R.F.W. // J. Phys. Chem. A. 1998. V. 102. № 37. P. 7314.
  18. 18. Tsirelson V.G. // The Quantum Theory of Atoms in Molecules. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2007. P. 257.
  19. 19. Pendás A.M., Francisco E., Blanco A.M. et al. // Chem. – A Eur. J. 2007. V. 13. № 33. P. 9362.
  20. 20. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170.
  21. 21. Mata I., Alkorta I., Espinosa E. et al. // Ibid. 2011. V. 507. № 1–3. P. 185.
  22. 22. Espinosa E., Alkorta I., Elguero J. et al. // J. Chem. Phys. 2002. V. 117. № 12. P. 5529.
  23. 23. Vener M.V., Egorova A.N., Churakov A.V. et al. // J. Comput. Chem. 2012. V. 33. № 29. P. 2303.
  24. 24. Bushmarinov I.S., Lyssenko K.A., Antipin M.Y. // Russ. Chem. Rev. 2009. V. 78. № 4. P. 283.
  25. 25. Ananyev I.V., Karnoukhova V.A., Dmitrienko A.O. et al. // J. Phys. Chem. A. 2017. V. 121. № 23. P. 4517.
  26. 26. Bartashevich E.V., Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181.
  27. 27. Kuznetsov M.L. // Molecules. 2019. V. 24. № 15. P. 2733.
  28. 28. Kuznetsov M.L. // Int. J. Quantum Chem. 2019. V. 119. № 8. P. e25869.
  29. 29. Bartashevich E.V., Tsirelson V.G. // Phys. Chem. Chem. Phys. 2013. V. 15. № 7. P. 2530.
  30. 30. Alkorta I., Legon A. // Molecules. 2017. V. 22. № 10. P. 1786.
  31. 31. Granovsky A.A. Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html.
  32. 32. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  33. 33. Jorge F.E., Neto A.C., Camiletti G.G. et al. // Ibid. 2009. V. 130. № 6. P. 064108.
  34. 34. Bartashevich E.V., Mukhitdinova S.E., Klyuev I.V. et al. // Molecules. 2022. V. 27. № 17. P. 5411.
  35. 35. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580.
  36. 36. Colombant D., Manheimer W., Ott E. // Phys. Rev. Lett. 1984. V. 53. № 5. P. 446.
  37. 37. Statistica: 13. TIBCO Software Inc, http://statsoft.ru/#tab-STATISTICA-link
  38. 38. Vener M.V., Shishkina A.V., Rykounov A.A. et al. // J. Phys. Chem. A 2013. V. 117. № 35. P. 8459.
  39. 39. Mata I., Alkorta I., Espinosa E. et al. // Chem. Phys. Lett. V. 508. № 4–6. P. 332.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library