RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Physicochemical and Catalytic Properties of the Mo–Zr/ZSM-5 Catalysts of Methane Dehydroaromatization

PII
10.31857/S0044453723110055-1
DOI
10.31857/S0044453723110055
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1584-1593
Abstract
The effect of the method for the introduction of zirconium in the 4Mo/ZSM-5 catalyst and of its amount on the physicochemical and catalytic properties of the catalyst during the nonoxidative conversion of methane into aromatic hydrocarbons (benzene and naphthalene) has been studied. The catalyst was modified with zirconium by impregnation and solid phase mixing. The resulting zeolite catalysts were studied by IR spectroscopy, X-ray diffraction analysis, low-temperature nitrogen adsorption, temperature-programmed ammonia desorption, scanning and transmission electron microscopy, and simultaneous thermal analysis. With an increase in the zirconium concentration introduced in the 4Mo/ZSM-5 catalyst, the strength and concentration of its strong acid sites that are responsible for methane aromatization decrease regardless of the method of modification. The particle size and morphology of the catalyst, the distribution of Mo and Zr in them, and the presence of coke deposits on their surface were determined by scanning and transmission electron microscopy. The catalytic tests and subsequent thermal analysis of the samples showed that the addition of zirconium to the 4Mo/ZSM-5 catalyst leads not only to an increase in its catalytic activity, but also to operational stability due to the lower rate of coke formation. It was established that 4Mo/ZSM-5 modified with 1 wt % Zr by solid-phase synthesis is the most effective catalyst in methane dehydroaromatization (DHA).
Keywords
дегидроароматизация метана металлцеолитные катализаторы цеолит типа ZSM-5 микро-мезопористая структура кислотность конверсия активность
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Ma S., Guo X., Zhao L. et al. // J. Energy Chem. 2013. V. 22. P. 1. https://doi.org/10.1016/S2095-4956 (13)60001-7
  2. 2. Wang B., Albarracin-Suazo S., Pagan-Torres Y. et al. // Catal. Today. 2017. V. 285. P. 147. https://doi.org/10.1016/j.cattod.2017.01.023
  3. 3. Ramasubramanian V., Ramsurn H., Price G.L. // J. Energy Chem. 2019. V. 34. P. 20. https://doi.org/10.1016/j.jechem.2018.09.018
  4. 4. Corredor E.C., Chitta P., Deo M.D. // Fuel Process. Technol. 2019. V. 183. P. 55. https://doi.org/10.1016/j.fuproc.2018.05.038
  5. 5. Rahman M., Infantes-Molina A., Boubnov A. et al. // J. Catal. 2019. V. 375. P. 314. https://doi.org/10.1016/j.jcat.2019.06.002
  6. 6. Chen L., Lin L., Xu Z. et al. // J. Catal. 1995. V. 157. P. 190. https://doi.org/10.1006/jcat.1995.1279
  7. 7. Kiani D., Sourav S., Tang Y. et al. // Chem. Soc. Rev. 2021. V. 50. P. 1251. https://doi.org/10.1039/D0CS01016B
  8. 8. Menon U., Rahman M., Khatib S.J. // Appl. Catal. A, General. 2020. V. 608. P. 117870. https://doi.org/10.1016/j.apcata.2020.117870
  9. 9. Ogawa Y., Xu Y., Zhang Z. et al. // Resources Chem. Mater. 2022. V. 1. P. 80. https://doi.org/10.1016/j.recm.2022.01.004
  10. 10. Kosinov N., Hensen E.J.M. // Adv. Mater. 2020. V. 32. P. 2002565. https://doi.org/10.1002/adma.202002565
  11. 11. Chen L., Lin L., Xu Z. et al. // Catal. Lett. 1996. V. 39. P. 169. https://doi.org/10.1007/BF00805578
  12. 12. Wang L., Xu Y., Wong S. et al. // Appl. Catal. A: 1997. V. 152. P. 173. https://doi.org/10.1016/S0926-860X (96)00366-3
  13. 13. Liu S., Dong Q., Ohnishi R. et al. // Chem. Commun. 1997. № 15. P. 1445. https://doi.org/10.1039/A702731A
  14. 14. Wang Q., Lin W. // J. Nat. Gas Chem. 2004. V. 13. P. 91. https://doi.org/10.1109/TIP.2004.823822
  15. 15. Sridhar A., Rahman M., Infantes-Molina A. et al. // Appl. Catal. A, General. 2020. V. 589. P. 117247. https://doi.org/10.1016/j.apcata.2019.117247
  16. 16. Восмерикова Л.Н., Волынкина А.Н., Восмериков А.В. и др. // НефтеГазоХимия. 2015. № 1. С. 37. [Vosmerikova L.N., Volynkina A.N., Vosmerikov A.V. et al. // Oil & Gas Chemistry. 2015. No. 1. P. 37 (In Russ)]
  17. 17. Korobitsyna L.L., Zharnov K.N., Stepanov A.A. et al. // Journal of Siberian Federal University. Chemistry. 2019. V. 12. P. 118. https://doi.org/10.17516/1998-2836-0111
  18. 18. Гусев А.И. Нанокристаллические материалы: методы получения и свойства. Екатеринбург: УрО РАН, 1988. 200 c. [Gusev A.I. Nano-crystalline materials: methods of obtaining and properties. Yekaterinburg: IPM UrO RAN, 1998. 200 p. (In Russ.)]
  19. 19. Shukla D., Pandya V. // J. Chem. Tech. Biotechnol. 1983. V. 44. P. 147.
  20. 20. Vosmerikov A.V., Echevskii G.V., Korobitsyna L.L. et al. // Kinetics and Catalysis. 2005. V. 46. № 5. P. 724. https://doi.org/10.1007/s10975-005-0128-2
  21. 21. Zaikovskii V.I., Vosmerikov A.V., Anufrienko V.F. et al. // Doklady Physical Chemistry. 2005. V. 404. P. 201. https://doi.org/10.1007/s10634-005-0060-1
  22. 22. Denardin F.G., Perez-Lopez O.W. // Micropor. Mesopor. Mater. 2020. V. 295. P. 109961. https://doi.org/10.1016/j.micromeso.2019.109961
  23. 23. Stepanov A.A., Korobitsyna L.L., Vosmerikov A.V. // Catalysis in Industry. 2022. V. 14. P. 11. https://doi.org/10.1134/S2070050422010093
  24. 24. Song Y., Zhang Q., Xu Y. et al. // Appl. Catal. A: General. 2017. V. 530. P. 12. https://doi.org/10.1016/j.apcata.2016.11.016
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library