RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene

PII
10.31857/S0044453723110158-1
DOI
10.31857/S0044453723110158
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1547-1555
Abstract
DFT modeling is used to calculate the free energy profiles of oxygen reduction in acidic and alkaline media on surfaces of nitrogen-doped graphene rather than defect-free graphene. Both four- and two-electron mechanisms of associative reaction are considered. Calculations are made in the grand canonical ensemble at a fixed electrode potential. It is shown that calculations at a fixed potential differ considerably from ones generally accepted at a fixed surface charge. It is found that the electrocatalytic effect of the nitrogen impurity is associated with an increase in the OOH intermediate’s energy of chemisorption that reduces the energy of the oxygen molecule’s protonation reaction. It is also shown that a nitrogen impurity inhibits the two-electron reaction mechanism in an alkaline medium.
Keywords
реакция восстановления кислорода электрокатализ графен азотная примесь
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Ferriday T.B., Middleton P.H. // Int. J. Hydrogen Energy. 2021. V. 46. № 35. P. 18489.
  2. 2. Ma R., Lin G., Zhou Y. et al. // npj Comput. Mater. 2019. V. 5. № 1. P. 78.
  3. 3. Zhang L., Lin C., Zhang D. et al. // Adv. Mater. 2019. V. 31. № 13. P. 1805252.
  4. 4. Wang B., Liu B., Dai L. // Adv. Sustain. Syst. 2021. V. 5. № 1. P. 2000134.
  5. 5. Jia Y., Zhang L., Zhuang L. et al. // Nat. Catal. 2019. V. 2. № 8. P. 688.
  6. 6. Begum H., Ahmed M.S., Kim Y.-B. // Sci. Rep. 2020. V. 10. № 1. P. 12431.
  7. 7. Tabassum H., Zou R., Mahmood A. et al. // J. Mater. Chem. A. 2016. V. 4. № 42. P. 16469.
  8. 8. Lai L., Potts J., Zhan D. et al. // Energy Environ. Sci. 2012. V. 5. № 7. P. 7936.
  9. 9. Wan K., Yu Z.-P., Li X.-H. et al. // ACS Catal. 2015. V. 5. № 7. P. 4325.
  10. 10. Rauf M., Zhao Y.-D., Wang Y.-C. et al. // Electrochem. commun. 2016. V. 73. P. 71.
  11. 11. Yang H., Miao J., Hung S.-F. et al. // Sci. Adv. 2016. V. 2. № 4. P. e1501122.
  12. 12. Kim I.T., Song M., Kim Y. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 47. P. 22026.
  13. 13. Guo D., Shibuya R., Akiba C. et al. // Science. 2016. V. 351. № 6271. P. 361.
  14. 14. Okamoto Y. // Appl. Surf. Sci. 2009. V. 256. № 1. P. 335.
  15. 15. Ikeda T., Boero M., Huang S.-F. et al. // J. Phys. Chem. C. 2008. V. 112. № 38. P. 14706.
  16. 16. Zhang L., Xia Z. // Ibid. 2011. V. 115. № 22. P. 11170.
  17. 17. Wan X., Shui J. // Sci. Adv. 2022. V. 1. № 1. P. e1400129.
  18. 18. Nørskov J.K., Rossmeisl J., Logadottir A. et al. // J. Phys. Chem. B. 2004. V. 108. № 46. P. 17886.
  19. 19. Yu L., Pan X., Cao X. et al. // J. Catal. 2011. V. 282. № 1. P. 183.
  20. 20. Oberhofer H. Handbook of Materials Modeling. Methods: Theory and Modeling. Cham: Springer International Publishing, 2018. 1987 p.
  21. 21. Sundararaman R., Goddard W.A., Arias T.A. // J. Chem. Phys. 2017. V. 146. № 11. P. 114104.
  22. 22. Kim D., Shi J., Liu Y. // J. Am. Chem. Soc. 2018. V. 140. № 29. P. 9127.
  23. 23. Kislenko V.A., Pavlov S.V., Kislenko S.A. // Electrochim. Acta. 2020. V. 341. P. 136011.
  24. 24. Pavlov S.V., Kislenko V.A., Kislenko S.A. // J. Phys. Chem. C. 2020. V. 124. № 33. P. 18147–18155.
  25. 25. Gao G., Wang L.-W. // J. Catal. 2020. V. 391. P. 530.
  26. 26. Sundararaman R., Letchworth-Weaver K., Schwarz K. et al. // SoftwareX. 2017. V. 6. P. 278.
  27. 27. Grimme S., Antony J., Ehrlich S. et al. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104.
  28. 28. Garrity K.F., Bennett J.W., Rabe K.M. et al. // Comput. Mater. Sci. 2014. V. 81. P. 446.
  29. 29. Kakaei K., Esrafili M.D., Ehsani A. Chapter 6 – Oxygen Reduction Reaction // Graphene Surfaces / ed. Kakaei K., Esrafili M.D., Ehsani A. Elsevier, 2019. V. 27. P. 203–252.
  30. 30. Yan H.J., Xu B., Shi S.Q., Ouyang C.Y. // J. Appl. Phys. 2012. V. 112. № 10. P. 104316.
  31. 31. Gunceler D., Letchworth-Weaver K., Sundararaman R. et al. // Model. Simul. Mater. Sci. Eng. 2013. V. 21. № 7. P. 74005.
  32. 32. Ashcroft N., Mermin D. Solid State Physics. Cengage Learning, 1976. 848 p.
  33. 33. Sorescu D.C., Jordan K.D., Avouris P. // J. Phys. Chem. B. 2001. V. 105, № 45. P. 11227.
  34. 34. Heller I., Kong J., Williams K.A. et al. // J. Am. Chem. Soc. 2006. V. 128. № 22. P. 7353.
  35. 35. Savin G.I., Shabanov B.M., Telegin P.N., Baranov A.V. // Lobachevskii J. Math. 2019. V. 40. № 11. P. 1853.
  36. 36. Zacharov I., Arslanov R., Gunin M. et al. // Open Eng. 2019. V. 9. № 1. P. 512.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library