- Код статьи
- 10.31857/S0044453724040144-1
- DOI
- 10.31857/S0044453724040144
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 98 / Номер выпуска 4
- Страницы
- 130-139
- Аннотация
- В работе исследована фрагментация фосфорномолибденовой кислоты (ФМК) методом лазерной десорбции/ионизации. Обнаружено, что при лазерной десорбции/ионизации кристаллы кислоты склонны к образованию частиц кластерного типа (MoO3)n и HPO3∙(MoO3)n. При регистрации положительных ионов были обнаружены частицы с общей формулой HPO2∙(MoO3)n, в состав которых входят Mo+5 и Mo+6. Масс-спектрометрическое исследование растворов ФМК совместно с матрицей 2,5-дигидроксибензойной кислоты позволило зафиксировать гидратированный молекулярный ион H3PMo12O40·MoO3·4H2O. При изучении влияния параметров лазерной десорбции/ионизации на информативность масс-спектра установлено, что в общем случае значения интенсивности пика и мощности лазера, а также число импульсов находятся в симбатной зависимости. Интенсивность пика в большей степени зависит от мощности лазера, чем от количества выстрелов.
- Ключевые слова
- гетерополикислоты лазерная десорбция/ионизация энергия лазера фосфорномолибденовая кислота
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 8
Библиография
- 1. Keggin J.F. // Ser. A. Contain. Pap. a Math. Phys. Character. 1934. V. 144. № 851. P. 75.
- 2. Koshcheeva O.S., Shuvaeva O.V., Shtadler D.V., Kuznetsova L.I. // Chem. Sustain. Dev. 2005. № 3. P. 467.
- 3. Zhang Y., Zhang J., Wu L. et al. // J. Hazard. Mater. 2021. V. 404. Part B. № 124044. DOI: 10.1016/j.jhazmat.2020.124044
- 4. Nikoonahad A., Djahed B., Norzaee S. et al. // Peer J. 2018. V. 6:e5501. DOI: 10.7717/peerj.5501
- 5. Feng C., Shang H., Liu X. // Chinese J. Catal. 2014. V. 35. P. 168. DOI: 10.1016/S1872-2067(12)60736-0
- 6. Morosanova M.A., Morosanova E.I. // Chem. Cent. J. 2017. V. 11. № 3. P. 1. https://doi.org/10.1186/s13065-016-0233-5
- 7. Burns D.T., Chimpalee N., Chimpalee D., Rattanariderom S. // Anal. Chim. Acta. 1991. V. 243. P. 187. https://doi.org/10.1016/S0003-2670 (00)82559-3
- 8. Morosanova E.I., Reznikova E.A., Velikorodnyi A.A. // J. Anal. Chem. 2001. V. 56. P. 173–177. https://doi.org/10.1023/A:1009459021972
- 9. Orsina V., Sasca V., Popa A., Suba M. // Catal. Today. 2021. V. 366. P. 123. https://doi.org/10.1016/j.cattod.2019.12.040
- 10. Rodikova Y., Zhizhina E. // React. Kinet. Mech. Catal. 2020. V. 130. P. 403. https://doi.org/10.1007/s11144-020-01782-z
- 11. Bryzhin A.A., Gantman M.G., Buryak A.K., Tarkhanova I.G. // Appl. Catal. B Environ. 2019. V. 257. № 117938. https://doi.org/10.1016/j.apcatb.2019.117938
- 12. Bryzhin A.A., Buryak A.K., Gantman M.G. et al. // Kinet. Catal. 2020. V. 61. P. 775. https://doi.org/10.1134/S0023158420050018
- 13. Frenzel R.A., Palermo V., Sathicq A.G. et al. // Microporous Mesoporous Mater. 2021. V. 310. № 110584. https://doi.org/10.1016/j.micromeso.2020.110584
- 14. Bagtache R., Meziani D., Abdmeziem K., Trari M. // J. Mol. Struct. 2021. V. 1227. № 129718. https://doi.org/10.1016/j.molstruc.2020.129718
- 15. Kong H., He P., Yang Z. et al. // Dalt. Trans. 2020. V. 49. P. 7420. https://doi.org/10.1039/D0DT00444H
- 16. Wang Y., Li F., Jiang N. et al. // Dalt. Trans. 2019. V. 48. P. 14347. https://doi.org/10.1039/C9DT02789K
- 17. Keshavarz M., Iravani N., Parhami A. // J. Mol. Struct. 2019. V. 1189. P. 272. https://doi.org/10.1016/j.molstruc.2019.04.027
- 18. Azuma S., Kadoguchi T., Eguchi Y. et al. // Dalt. Trans. 2020. V. 49. P. 2766. https://doi.org/10.1039/c9dt04737a
- 19. Zhao P., Wang J., Chen G. et al. // Catal. Sci. Technol. 2013. V. 3. P. 1394. https://doi.org/10.1039/C3CY20796J
- 20. Nakamura I., Miras H.N., Fujiwara A. et al. // J. Am. Chem. Soc. 2015. V. 137. № 20. P. 6524. https://doi.org/10.1021/ja512758j
- 21. Kuleshov D.O., Kuleshova T.E., Bobkov D.E. et al. // Nauchnoe Priborostr. 2018. V. 28. № 3. P. 72. https://doi.org/10.18358/np-28-3-i7283
- 22. Salionov D., Ludwig C., Bjelić S. // J. Am. Soc. Mass Spectrom. 2022. V. 33. № 6. P. 932. https://doi.org/10.1021/jasms.1c00377
- 23. Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
- 24. Полунина И.А., Полунин К.Е., Буряк А.К. // Коллоид. журн. 2020. Т. 82. № 6. С. 715–724. [Polunina I.A., Polunin K.E., Buryak A.K. // Colloid J. 2020. V. 82. P. 696. https://doi.org/10.1134/S1061933X20060095]
- 25. Il’in E.G., Parshakov A.S., Buryak A.K. // Int. J. Mass Spectrom. 2020. V. 458. № 116448. https://doi.org/10.1016/j.ijms.2020.116448
- 26. Matsuo Y., Kanaoka S., Aoshima S. // Kobunshi Ronbunshu. V. 2011. V. 68. P. 176. https://doi.org/10.1295/koron.68.176
- 27. Yokoyama A., Kojima T., Ohkubo K., Fukuzumi S. // Inorg. Chem. 2010. V. 49. № 23. P. 11190. https://doi.org/10.1021/ic1019586
- 28. Yokoyama A., Kojima T., Fukuzumi S. // Dalt. Trans. 2011. V. 40. P. 6445. https://doi.org/10.1039/C0DT01708F
- 29. Boulicault J.E., Alves S., Cole R.B. // J. Am. Soc. Mass Spectrom. 2016. V. 27. P. 1301. https://doi.org/10.1007/s13361-016-1400-6
- 30. Ali-Zade A.G., Buryak A.K., Zelikman V.M. et al. // New J. Chem. 2020. V. 44. P. 6402. https://doi.org/10.1039/C9NJ05403K
- 31. Baker L.C.W., Glick D.C. // Chem. Rev. 1998. V. 98. P. 3. https://doi.org/10.1021/cr960392l
- 32. Gumerova N.I., Rompel A. // Nat. Rev. Chem. 2018. V. 2. № 0112. P. 1. https://doi.org/10.1038/s41570-018-0112
- 33. Gavrilova N., Myachina M., Dyakonov V. et al. // Nanomater. 2020. V. 10. P. 2428. https://doi.org/10.3390/nano10102053
- 34. Das L., Ray S., Raha S. et al. // Colloids Surf. A Physicochem. Eng. Asp. 2021. V. 611. № 125808. https://doi.org/10.1016/j.colsurfa.2020.125808
- 35. Wei W., Xin Z., Shi H.-T. et al. // Zeitschrift fur Naturforsch. Sect. B J. Chem. Sci. 2015. V. 70. № 8. P. 537. https://doi.org/10.1515/znb-2014-0256
- 36. Lü H., Ren W., Liao W. et al. // Appl. Catal. B Environ. 2013. V. 138–139. P. 79. https://doi.org/10.1016/j.apcatb.2013.02.034