- Код статьи
- 10.31857/S0044453724060037-1
- DOI
- 10.31857/S0044453724060037
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 98 / Номер выпуска 6
- Страницы
- 15-20
- Аннотация
- Представлена конструкция спектрометра миллиметрового диапазона длин волн для исследования вращательных спектров молекул и слабосвязанных молекулярных комплексов в сверхзвуковой газовой струе. Спектрометр использует в качестве источника излучения высокостабильный СВЧ-синтезатор (1–22 ГГц) в сочетании с активными умножителями частоты и охватывает диапазон 50–170 ГГц. Газ истекает из сопла вдоль направления распространения излучения, которое совершает два прохода через вакуумную камеру. Для этого импульсное сопло размещено в центре уголкового отражателя, на который попадает излучение. Поглощение в струе регистрируется детекторными диодами с барьером Шоттки. Предложенная схема соосного распространения излучения и молекулярного пучка обеспечивает лучшую чувствительность и более высокое спектральное разрешение по сравнению с обычно используемой перпендикулярной конфигурацией. Инструментальное разрешение спектрометра составляет 30–40 кГц, а погрешность измерения частоты оценивается в 3–4 кГц. Зарегистрированные спектры редких изотопологов CO и слабосвязанных комплексов Ne–CO демонстрируют возможности нового спектрометра.
- Ключевые слова
- молекулярная струя миллиметровая спектроскопия слабосвязанные комплексы изотопологи монооксида углерода
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 4
Библиография
- 1. Havenith M. Infrared Spectroscopy of Molecular Clusters. H.: Springer Berlin, 2002. 120 p. https://doi.org/10.1007/3-540-45457-8
- 2. Balle T.J., Flygare W.H. // Rev. Sci. Instrum. 1981. V. 52. P. 33. https://doi.org/10.1063/1.1136443
- 3. Brown G.G., Dian B.C., Douglass K.O. et al. // Rev. Sci. Instrum. 2008. V. 79. P. 053103. https://doi.org/10.1063/1.2919120
- 4. Brown G.G., Dian B.C., Douglass K.O. et al. // J. Mol. Spectrosc. 2006. V. 238. P. 200. https://doi.org/10.1016/j.jms.2006.05.003
- 5. Bumgarner R.E., Blake G.A. // Chem. Phys. Lett. 1989. V. 161. P. 308. https://doi.org/10.1016/0009-2614 (89)85090-0
- 6. Zwart E., ter Meulen J.J., Meerts W.L. // Chem. Phys. Lett. 1990. V. 166. P. 500. https://doi.org/10.1016/0009-2614 (90)87141-D
- 7. Hepp M., Gendiesch R., Pak I. et al. // Mol. Phys. 1997. V. 92. P. 229. https://doi.org/10.1080/002689797170428
- 8. Krupnov A.F., Tretyakov M. Yu., Parshin V.V. et al. // J. Mol. Spectrosc. 2000. V. 202. P. 107. https://doi.org/10.1006/jmsp.2000.8104
- 9. Tretyakov M. Yu., Krupnov A.F., Koshelev M.A. et al. // Rev. Sci. Instrum. 2009. V. 80. P. 093106. https://doi.org/10.1063/1.3204447
- 10. Tretyakov M. Yu., Serov E.A., Koshelev M.A. et al. // Phys. Rev. Lett. 2013. V. 110. P. 093001. https://doi.org/10.1103/PhysRevLett.110.093001
- 11. Tretyakov M. Yu., Koshelev M.A., Serov E.A. et al. // Physics-Uspekhi 2014. V. 57. P. 1083. https://doi.org/10.3367/ufne.0184.201411c.1199
- 12. Dumesh B.S., Surin L.A. // Rev. Sci. Instrum. 1996. V. 67. P. 3458. https://doi.org/10.1063/1.1147159
- 13. Surin L.A., Dumesh B.S., Lewen F. et al. // Rev. Sci. Instrum. 2001. V. 72. P. 2535. https://doi.org/10.1063/1.1369640
- 14. Surin L.A. // JETP Lett. 2013. V. 97. P. 57. https://doi.org/10.1134/S0021364013010104
- 15. Grabow J.-U., Stahl W. // Z. Naturforsch. A Phys. Sci. 1990. V. 45. P. 1043. https://doi.org/10.1515/zna-1990-0817
- 16. Walker K.A., McKellar A.R.W. // J. Mol. Spectrosc. 2001. V. 205. P. 331. https://doi.org/10.1006/jmsp.2000.8272
- 17. Ziurys L.M., Barclay W.L., Jr., Anderson M.A. et al. // Rev. Sci. Instrum. 1994. V. 65. P. 1517. http://dx.doi.org/10.1063/1.1144885
- 18. Cazzoli G., Puzzarini C., Lapinov A.V. // Astrophys. J. 2003. V. 592. L95. https://doi.org/10.1086/377527
- 19. Cazzoli G., Dore L., Cludi L. et al. // J. Mol. Spectrosc. 2002. V. 215. P. 160. https://doi.org/10.1006/jmsp.2002.8604
- 20. Klapper G., Lewen F., Belov S.P. et al. // Z. Naturforsch. 2000. V. 55a. P. 441. https://doi.org/10.1515/zna-2000-3-410
- 21. Wang Z., Feng E., Yu H. et al. // J. Chem. Phys. 2011. V. 134. P. 024320. https://doi.org/10.1063/1.3517313
- 22. Winnewisser G., Dumesh B.S., Pak I. et al. // J. Mol. Spectrosc. 1998. V. 192. P. 243.