RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Моделирование переноса излучения в ближнем ИК-диапазоне и определение содержания метана в атмосфере с использованием различных спектроскопических баз данных

PII
10.31857/S0044453724060054-1
DOI
10.31857/S0044453724060054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 6
Pages
25-33
Abstract
Журнал физической химии, Моделирование переноса излучения в ближнем ИК-диапазоне и определение содержания метана в атмосфере с использованием различных спектроскопических баз данных
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Masson-Delmotte V., Zhai P., Pirani A. et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. doi:10.1017/9781009157896
  2. 2. Forster P., Ramaswamy V., Artaxo P. et al. 2007: Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Chapter 2. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  3. 3. Prather M.J., Holmes C.D., Hsu J. // Geophys. Res. Lett. 2012. V. 39. P. L09803. doi:10.1029/2012GL051440
  4. 4. Holl G., Walker K.A., Conway S. et al. // Atmos Meas Tech. 2016. V. 9. P. 1961–1980. https://doi.org/10.5194/amt-9-1961-2016
  5. 5. Василенко И.А., Садовников С.А., Романовский О.А. // Оптика атмосферы и океана. 2020. Т. 33. № 04. С. 298–301. DOI: 10.15372/AOO20200408
  6. 6. Chesnokova T.Yu., Chentsov A.V., Rokotyan N.V. et al. // J. Mol. Spectrosc. 2016. V. 327. P. 171–179. DOI: 10.1016/j.jms.2016.07.001
  7. 7. Chesnokova T.Yu., Makarova M.V., Chentsov A.V. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 254. 107187.
  8. 8. Rothman L.S., Gordon, I.E., Barbe A. et al. // Ibid. 2009. V. 110. P. 533–572.
  9. 9. Rothman L.S., Gordon I.E., Babikov Y. et al. // Ibid. 2013. V. 130. P. 4–50.
  10. 10. Gordon I.E., Rothman L.S., Hill C. et al. // Ibid. 2017. V. 203. P. 3–69.
  11. 11. Gordon I.E., Rothman, L.S., Hargreaves, R.J. et al. // Ibid. 2022. V. 277(10794). P. 1.
  12. 12. Jacquinet-Husson N., Armante R., Scott N.A. et al. // J. Mol. Spectrosc. 2016. V. 327. P. 31.
  13. 13. Delahaye T., Armante R., Scott N.A. et al. // J. Mol. Spectrosc. 2021. V. 380. P. 111510. https://doi.org/10.1016/j.jms.2021.111510
  14. 14. Toon G.C. ATM compilations from Geoffrey Toon (JPL). http://mark4sun.jpl.nasa.gov/toon/linelist/linelist.htm
  15. 15. Toon G.C., Blavier J.F., Sung K. et al. // J. Quant. Spectrosc. Radiat. Transf. 2016. V. 182. P. 324. https://doi.org/10.1016/j.jqsrt.2016.05.021
  16. 16. Nikitin A.V., Lyulin O.M., Mikhailenko S.N. et al. // Ibid. 2015. V. 154. P. 63. https://doi.org/10.1016/j.jqsrt.2014.12.003
  17. 17. Birk M., Wagner G., Loos J. et al. ESA SEOM–IAS – spectroscopic parameters database 2.3 μm region // Technical Report. Scientific Exploitation of Operational Missions – Improved Atmospheric Spectroscopy Databases; 2017. https://doi.org/105281/zenodo1009126
  18. 18. Nikitin A., Rodina A., Thomas X. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 253. P. 107061. https://doi.org/10.1016/j.jqsrt.2020.107061
  19. 19. Predoi-Cross A., Brawley-Tremblay M., Brown L.R. et al. // J. Mol. Spectrosc. 2006. V. 236. № 2. P. 201. https://doi.org/10.1016/ j.jms.2006.01.013
  20. 20. Devi V., Benner D.C., Sung K. et al. // J. Quant. Spectrosc. Radiat. Transf. 2016. V. 177. P. 152. https://doi.org/10.1016/j.jqsrt.2015.12.009
  21. 21. Mitsel A.A., Ptashnik I.V., Firsov K.M. et al. // Atmospheric and Oceanic Optics. 1995. V. 8. № 10. P. 847.
  22. 22. Anderson G., Clough S., Kneizys F. et al. AFGL Atmospheric Constituent Profiles (0–120 km). Air Force Geophysics Laboratory. AFGL-TR-86-0110. Environmental Research Paper. Hanscom AFB: MA 01736. 1986. № 954. 25 p.
  23. 23. Gribanov K., Jouzel J., Bastrikov V. et al. // Atmos. Chem. Phys. 2014. V. 14. P. 5943. https://doi.org/10.5194/acp-14-5943-2014
  24. 24. Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR40-year reanalysis project // B. Am. Meteorol. Soc. 1996. V. 77. P. 437.
  25. 25. http://www.esrl.noaa.gov/psd/data/reanalysis/
  26. 26. Palm M. Theoretical background SFIT4 / Sfit4 Error Analysis Workshop. 2013.
  27. 27. Rinsland C.P., Jones N.B., Connor B.J. et al. // J. Geophysical Research. 1998. V. 103. P. 28197. https://doi.org/10.1029/98JD02515
  28. 28. Armante R., Scott N., Crevoisier C. et al. // J. Quant. Spectrosc. Radiat. Transf. 2016. V. 327. P. 180.
  29. 29. Rodgers C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice / World Scientific Publishing Co. Pte. Ltd., 2000.
  30. 30. https://airs.jpl.nasa.gov/
  31. 31. https://giovanni.gsfc.nasa.gov/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library