RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Количественная оценка толщины гидратной оболочки молекул моногидрата лактозы в водных растворах

PII
10.31857/S0044453724060133-1
DOI
10.31857/S0044453724060133
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 6
Pages
87-94
Abstract
Журнал физической химии, Количественная оценка толщины гидратной оболочки молекул моногидрата лактозы в водных растворах
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Dominici S., Marescotti F., Sanmartin C. et al. //Foods. 2022. V. 11. P. 1486. DOI: 10.3390/foods11101486
  2. 2. Kemp M.C. //2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. 2007. P. 647–648. DOI: 10.1109/ICIMW.2007.4516664
  3. 3. Chen X., Weber I., Harrison R.W. //The J. of Phys. Chem. B. 2008. V. 112. P. 12073. DOI: 10.1021/jp802795a
  4. 4. George P., Witonsky R.J., Trachtman M. et al. //Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1970. V. 223. P. 1. DOI: 10.1016/0005-2728(70)90126-X
  5. 5. Sokolov A.P., Roh J.H., Mamontov E., García Sakai V. //Chemical Physics. 2008. V. 345. P. 212. DOI: 10.1016/j.chemphys.2007.07.013
  6. 6. Burgos-Cara A., Putnis C.V., Rodriguez-Navarro C., Ruiz-Agudo E. //Geochimica et Cosmochimica Acta. 2016. V. 179. P. 110. DOI: 10.1016/j.gca.2016.02.008
  7. 7. Sun Y., Zhong J., Zhang C. et al. //J. of Biomedical Optics. 2015. V. 20. P. 037006. DOI: 10.1117/1.JBO.20.3.037006
  8. 8. Zapanta M.J., Postelmans A., Saeys W. //Terahertz Photonics II. – SPIE, 2022. V. 12134. P. 66. DOI: 10.1117/12.2620986
  9. 9. Collins M.D., Hummer G., Quillin M.L. et al. //Proceedings of the National Academy of Sciences. 2005. V. 102. P. 16668. DOI: 10.1073/pnas.0508224102
  10. 10. Zhong D., Pal S.K., Zhang D. et al. //Ibid. 2002. V. 99. P. 13. DOI: 10.1073/pnas.012582399
  11. 11. Shiraga K., Adachi A., Nakamura M. et al. //The J. of Chem. Phys. 2017. V. 146. DOI: 10.1063/1.4978232
  12. 12. Shiraga K., Ogawa Y., Kondo N. et al. //Food Chemistry. 2013. V. 140. P. 315. DOI: 10.1016/j.foodchem.2013.02.066
  13. 13. Penkov N., Yashin V., Fesenko E. et al. //Applied spectroscopy. 2018. V. 72. P. 257. DOI: 10.1177/0003702817735551
  14. 14. Heugen U., Schwaab G., Bründermann E. et al. //Proceedings of the National Academy of Sciences. 2006. V. 103. P. 12301. DOI: 10.1073/pnas.0604897103
  15. 15. Bunkin N.F., Shkirin A.V., Ninham B.W. et al. //ACS omega. 2020. V. 5. P. 14689. DOI: 10.1021/acsomega.0c01444
  16. 16. Penkov N., Penkova N. //Frontiers in Physics. 2020. V. 8. P. 624779. DOI: 10.3389/fphy.2020.624779
  17. 17. Slatinskaya O.V., Pyrkov Yu. N., Filatova S.A. et al. // Ibid. 2021. V. 9. P. 641110. DOI: 10.3389/fphy.2021.641110
  18. 18. Gudkov S.V., Penkov N.V., Baimler I.V. et al. //Intern. J. of Molecular Sciences. 2020. V. 21. P. 8033. DOI: 10.3390/ijms21218033
  19. 19. Rey L. //Physica A: Statistical Mechanics and its Applications. 2003. V. 323. P. 67. DOI: 10.1016/S0378-4371(03)00047-5
  20. 20. Penkov N.V. //Physics of Wave Phenomena. 2019. V. 27. P. 128. DOI: 10.3103/S1541308X19020079
  21. 21. Penkov N.V. // Ibid. 2020. V. 28. P. 135. DOI: 10.3103/S1541308X20020132
  22. 22. Penkov N.V. //Pharmaceutics. 2021. V. 13. P. 1864. DOI: 10.3390/pharmaceutics13111864
  23. 23. Ryzhkina I.S., Murtazina L.I., Kiseleva Yu. V., Konovalov A.I. //Dokl. Phys. Chem. 2015. V. 462. P. 110–114. DOI: 10.1134/S0012501615050048
  24. 24. Sarimov R.M., Simakin A.V., Matveeva T.A. et al. //Applied Sciences. 2021. V. 11. P. 11466. DOI: 10.3390/app112311466
  25. 25. Chikramane P.S., Kalita D., Suresh A.K. et al. //Langmuir. 2012. V. 28. P. 15864–15875. DOI: 10.1021/la303477s
  26. 26. Europea. U. //Official J.of the European Union. L 2004. V. 136. P. 34.
  27. 27. Vrazhnov D., Knyazkova A., Konnikova M. et al. //Applied Sciences. 2022. V. 12. P. 10533. DOI: 10.3390/app122010533
  28. 28. Cherkasova O.P., Nazarov M.M., Konnikova M., Shkurinov A.P. //J. of Infrared, Millimeter, and Terahertz Waves. 2020. V. 41. P. 1057. DOI: 10.1007/s10762-020-00684-4
  29. 29. Shiraga K., Suzuki T., Kondo N. et al. //Carbohydrate research. 2015. V. 406. P. 46–54. DOI: 10.1016/j.carres.2015.01.002
  30. 30. Shiraga K., Suzuki T., Kondo N. et al. //The J. of Chemical Physics. 2015. V. 142. DOI: 10.1063/1.4922482
  31. 31. Ribeiro A.C. F., Ortona O., Simões S.M. N. et al. //J. of Chemical & Engineering Data. 2006. V. 51. P. 1836. DOI: 10.1021/je0602061
  32. 32. Leitner D.M., Gruebele M., Havenith M. //HFSP Journal. 2008. V. 2. P. 314. DOI: 10.2976/1.2976661
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library