RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Энтальпия образования и энтальпия решетки оксида висмута, замещенного эрбием

PII
10.31857/S0044453724090099-1
DOI
10.31857/S0044453724090099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 9
Pages
65-68
Abstract
Методом твердофазных реакций был синтезирован оксид висмута, замещенный эрбием, состава Bi1.6Er0.4O3. Показано, что соединение имеет кубическую структуру, пространственная группа Fm3m. На основании измеренных энтальпий растворения Bi2O3, ErCl3, Bi1.6Er0.4O3 в 2 М растворе HCl определена стандартная энтальпия образования Bi1.6Er0.4O3 как следующая величина: ∆fH0(Bi1.6Er0.4O3(s)) = –819.0 ± 6.4 кДж/ моль. С использованием цикла Борна–Габера рассчитана энтальпия решетки для выше указанного соединения: ΔlatH0 (Bi1.6Er0.4O3(s)) = –13227 кДж/моль.
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Punn R., Feteira A.M., Greaves C. et al. // J. Amer. Chem. Soc. 2006. V. 128. P. 15386.
  2. 2. Weber M., Rodriguez R.D., Zahn D.R.T. et al. // Inorg. Chem. 2022. V. 61. P. 1571.
  3. 3. Song Y.Z., Qi B.X., Li M. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 1582.
  4. 4. Lomakin M.S., Proskurina O.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 830.
  5. 5. Matskevich N.I., Wolf Th., Pischur D. et al. // J. Therm. Anal. Calorim. 2016. V. 124. P. 1745.
  6. 6. Li K., Li L., Shi Q. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. P. 834.
  7. 7. Ershov D.S., Besprozvannykh N.V., Sinel’shchikova O. Yu. // Russ. J. Inorg. Chem. 2022. V. 67. P. 105.
  8. 8. Bryzgalova A.N., Matskevich N.I., Greaves C. et al. // Thermochim. Acta. 2011. V. 513. P. 124.
  9. 9. Dergacheva P.E., Kul’bakin I.V., Ashmarin A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1229.
  10. 10. Drache M., Roussel P., Wignacourt J.P. // Chem. Rev. 2007. V. 107. P. 80.
  11. 11. Minenkov Yu.F., Matskevich N.I., Stenin Yu.G. et al. // Thermochim. Acta. 1996. V. 278. P. 1.
  12. 12. Novoselov I.I., Makarov I.V., Fedotov V.A. et al. // Inorg. Mater. 2013. V. 49. P. 412.
  13. 13. Mandia R., Navrotsky A. // J. Am. Ceram. Soc. 2022. V. 105. P. 5843.
  14. 14. Arkhipin A.S., Pisch A., Zhomin G.M. et al. // J. Non-Cryst. Solids. 2023. V. 603. P. 122098.
  15. 15. Kosova D.A., Druzhinina A.I., Tiflova L.A. et al. // J. Chem. Thermodyn. 2019. V. 132. P. 432.
  16. 16. Matskevich N.I., Matskevich M. Yu., Wolf T. et al. // J. Alloys Compd. 2013. V. 577. P. 148.
  17. 17. Matskevich N.I., Bryzgalova A.N., Wolf T. et al. // J. Chem. Thermodyn. 2012. V. 53. P. 23.
  18. 18. Matskevich N.I., Popova T.L., Zolotova E.S. et al. // Thermochim. Acta. 1995. V. 254. P. 41.
  19. 19. Kilday M.V. // J. Res. Natl. Bur. Stand. 1980. P. 467.
  20. 20. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827.
  21. 21. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances), VINITI, Moscow, 1965–1982, issued 1–10.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library