RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Температура и энтальпия плавления нанооксидов UO₂ и ThO₂ различной морфологии

PII
10.31857/S0044453724110147-1
DOI
10.31857/S0044453724110147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 98 / Issue number 11
Pages
125-132
Abstract
Журнал физической химии, Температура и энтальпия плавления нанооксидов UO₂ и ThO₂ различной морфологии
Keywords
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
3

References

  1. 1. Spino J., Santa Cruz H., Jovani-Abril R. et al. // J. Nucl. Mater. 2012. V. 422. P. 27. https://doi.org/10.1016/j.jnucmat.2011.11.056
  2. 2. Khanal L.R., Sundararajan J.A., Qiang Y. // Energy Technol. 2020. V. 8. P. 1901070. https://doi.org/10.1002/ente.201901070
  3. 3. Leduc J., Frank M., Jürgensen L. et al. // ACS Catal. 2019. V. 9. P. 4719. https://doi.org/10.1021/acscatal.8b04924
  4. 4. Amidani L., Plakhova T.V., Romanchuk A. Yu. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 10635. https://doi.org/10.1039/C9CP01283D
  5. 5. Gerber E., Romanchuk A. Yu., Pidchenko I., et al. // Nanoscale. 2020. V. 12. P. 18039. https://doi.org/10.1039/D0NR03767B
  6. 6. Bonato L., Virot M., Dumas T.A. et al. // Nanoscale Adv. 2020. V. 2. № 1. P. 214. https://doi.org/10.1039/C9NA00662A
  7. 7. Moreau L.M., Herve A., Straub M.D. et al. // Chem. Sci. 2020. V. 11. P. 4648. https://doi.org/10.1039/C9SC06117G
  8. 8. Shi F.G. // J. Mater. Res. 1994. V.9. P. 1307. https://doi.org/10.1557/JMR.1994.1307
  9. 9. Jiang Q., Wen Z. Thermodynamics of Materials. Berlin Heidelberg Higher Education Press, Beijing and Springer-Verlag, 2011, 298 p.
  10. 10. Yang C.C., Mai Y.-W. // Materials Science and Engineering R: Reports. 2014. V. 79. P. 1.
  11. 11. Боярченков А.С., Поташников С.И., Некрасов К.А., Купряжкин А.Я. // Расплавы. 2012. № 2. С. 32. Boyarchenkov A.S., Potashnikov S.I., Nekrasov K.A., Kupryazhkin A. Ya. // Russian Metallurgy (Metally). 2012. V. 8. № 8. P. 676. https://doi.org/10.1134/S0036029512080034
  12. 12. Boyarchenkov A.S., Potashnikov S.I., Nekrasov K.A., Kupryazhkin A.Ya. // J. Nucl. Mater. 2012. V. 427. P. 311. https://doi.org/10.1016/j.jnucmat.2012.05.023
  13. 13. Махмуд-Ахунов Р.Ю., Тихончев М.Ю., Светухин В.В. // Журн. Техн. физики. 2013. Т. 83. № 8. С. 8. Makhmud-Akhunov R. Yu., Tikhonchev M. Yu., Svetukhin V.V. // Technical Physics. 2013. V. 58. № 8. P. 1094. https://doi.org/10.1134/S1063784213080197
  14. 14. Cappia F., Hudry D., Courtois E. et al. // Mater. Res. Express. 2014. V. 1. P. 025034. DOI 10.1088/2053-1591/1/2/025034
  15. 15. Cappia F., Jovani-Abril R., Spino J. et al. // Prog. Nucl. Energy. 2014. V. 72. P. 11. https://doi.org/10.1016/j.pnucene.2013.10.018
  16. 16. Wilde G. // Advanced Engineering Materials. 2021. V. 23. P. 2001387. https://doi.org/10.1002/adem.202001387
  17. 17. Guéneau C., Chartier A., Fossati P., et al. Comprehensive Nuclear Materials. V. 7. Amsterdam: Elsevier, 2020. P. 111–154. https://doi.org/10.1016/B978-0-12-803581-8.11786-2
  18. 18. Manara D., Ronchi C., Sheindlin M. et al. // J. Nucl. Mater. 2005. V. 342. P. 148. https://doi.org/10.1016/j.jnucmat.2005.04.002
  19. 19. Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
  20. 20. International Atomic Energy Agency. Thermophysical properties database of materials for light water reactors and heavy water reactors. Final report of a coordinated research project 1999–2005, Non-serial Publications / Ed. by Cognet G., Efanov A., Fortov V. et al. Vienna, IAEA-TECDOC-1496, IAEA, 2006. 397 p.
  21. 21. Gilvarry J.J. // Phys. Rev. 1956. V. 102. № 2. P. 308. https://doi.org/10.1103/PhysRev.102.308
  22. 22. Бацанов С.С. // Журн. физ. химии. 2012. Т. 86. № 11. С. 1890. Batsanov S.S. // Russ. J. Phys. Chem. V. 86. P. 1759. https://doi.org/10.1134/S0036024412110052
  23. 23. Leinders G., Cardinaels T., Binnemans K., Verwerft M. // J. Nucl. Mater. 2015. V. 459. P. 135. https://doi.org/10.1016/j.jnucmat.2015.01.029
  24. 24. Zhu Y.F., Lian J.S., Jiang Q. // J. Phys. Chem. C. 2009. V. 113. P. 16896. https://doi.org/10.1021/jp902097f
  25. 25. Zhu Y.-F., Zhao N., Jin B. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 9253. https://doi.org/10.1039/C6CP08061H
  26. 26. Hall R.O.A., Mortimer M.J. // J. Nucl. Mater. 1987. V. 148. P. 237. https://doi.org/10.1016/0022-3115 (87)90017-1
  27. 27. Jin M., Khafizov M., Jiang C. et al. // J. Phys. Condens. Matter. 2021. V. 33. P. 275402. https://doi.org/10.1088/1361-648X/abdc8f
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library