- PII
- 80044453725060157-1
- DOI
- 10.31857/80044453725060157
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 6
- Pages
- 952-963
- Abstract
- The photocatalytic activity of iron-containing silicon nitride-based metal-ceramic composites in the process of oxidative degradation of the pharmaceutical pollutant diclofenac (DCF) has been investigated. The composites were obtained by nitriding ferrosilicon without additives and ferrosilicon with shungite (modifier for SiC production) in combustion mode. It is noted that the use of urea allows to additionally modify the ceramic matrix of composites with semiconducting phases (FeO, CN) capable of absorption in the region of near-UV and visible light. The phase composition has been established, morphological features and optical properties of the composites have been studied. The acid-base properties of the surface have been evaluated. Adsorption and catalytic activity of composites in the absence and with HO addition under UV irradiation (Fenton photochemical process), under ozonation conditions under UV and visible light irradiation were studied. The highest degree of DCF degradation was found when heterogeneous photocatalysis and Fenton process were combined (84%) and under photocatalytic ozonation conditions (88%). The kinetics of photocatalytic degradation of DCF was investigated using a pseudo-first-order model. The degradation products of DCF were determined GC—MS.
- Keywords
- железосодержащие металлокерамические композиты гетерогенный фотокатализ процесс Фентона фотокаталитическое озонирование диклофенак
- Date of publication
- 06.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 11
References
- 1. Hernández-Tenorio R., González-Juárez E., Guzmán-Mar J.L. et al. // J. of Hazardous Materials Advances. 2022. V. 8. P. 100172. https://doi.org/10.1016/j.hazadv.2022.100172
- 2. O’Flynn, D., Lawler J., Yusuf A. et al. // Anal. Methods. 2021. V. 13. P. 575. https://doi.org/10.1039/D0AY02098B
- 3. Tiedelen E.J., Tahar A., McHugh B. et al. // Science of The Total Environment. 2017. V. 574 P. 1140. https://doi:10.1016/j.scitotenv.2016.09.084
- 4. Fernandes J.P., Almeida C.M.R., Salgado M.A. et al. // Toxics. 2021. V. 9. P. 257. https://doi:10.3390/toxics9100257
- 5. Wilkinson J.L., Boxall A.B.A., Kolpin D.W. et al. // Proceedings of the National Academy of Sciences. 2022. V. 119. № 8. P. 2113947119. https://doi:10.1073/pnas.2113947119
- 6. Guillossou R., Le Roux J., Mailler R. et al. // Chemosphere. 2019. V. 218. P. 1050. https://doi:10.1016/j.chemosphere.2018.11.182
- 7. Ma D., Yi H., Lai C. et al. // Ibid. 2021. V. 275. P. 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
- 8. Suhag M.H., Khatun A., Tateishi I. et al. // ACS Omega. 2023. V. 8. P. 11824. https://doi.org/10.1021/acsomega.2c06678
- 9. Yu Y., Yan L., Cheng J. et al. // Chemical Engineering Journal. 2017. V. 325 P. 647. https://doi.org/10.1016/j.ccj.2017.05.092
- 10. Ershov D.S., Besprozyannykh N.V., Sinel’shehikova O.Y. // Russ J. Inorg. Chem. 2022. V. 67. P. 105. https://doi.org/10.1134/S003602362201003X
- 11. Zhang L., Hao J., Jia Z. et al. // J. Solid State Chem. 2023. V. 325. P. 124167. https://doi.org/10.1016/j.jssc.2023.124167
- 12. Su S., Xing Z., Zhang S. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147890. https://doi.org/10.1016/j.apsusc.2020.147890
- 13. Sonhtag C., Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. [S.I.]: IWA Publishing, 2012. 320 p.
- 14. Li X., Chen W., Tang Y. et al. // Chemosphere. 2018. V. 206. P. 615. https://doi.org/10.1016/j.chemosphere.2018.05.066
- 15. Moreira N.F.F., Sousa J.M., Macedo G. et al. // Water Res. 2016. V. 94. P. 10. https://doi.org/10.1016/j.watres.2016.02.003
- 16. Valério A., Wang J., Tong S. et al. // Chem. Eng. Process. 2020. V. 149. P. 107838. https://doi.org/10.1016/j.cep.2020.107838
- 17. Camera-Roda G., Loddo V., Palmisano L. et al. // Appl. Catal. B: Environ. 2019. V. 253. P. 69. https://doi.org/10.1016/j.apcatb.2019.04.048
- 18. Skvortsova L.N., Kazantseva K.I., Bolgar K.A. et al. // Rev. and adv. in chem. 2022. V. 12. P. 289. https://doi.org/10.1134/S2634827623700137
- 19. Sadhishkumar P., Meena R.A.A., Palanismi T. et al. // Sci. Total Environ. 2020. P. 134057. https://doi.org/10.1016/j.scitotenv.2019.134057
- 20. Simon E., Duffek A., Stahl C. et al. // Environ. Int. 2022. V. 159. P. 107033. https://doi.org/10.1016/j.envint.2021.107033
- 21. Zhu J., Zhang G., Xian G. et al. // Front. Chem. 2019. V. 7. P. 796. https://doi.org/10.3389/fchem.2019.00796
- 22. Vitiello G., Iervolino G., Imparato C. et al. // Sci. Total. Environ. 2021. V. 762. P. 143066. doi:10.1016/j.scitotenv.2020.143066
- 23. Conte F., Tommasi M., Degrell S.N. et al. // ChemPhotoChem. 2023. V. 8. P. 202300177. https://doi.org/10.1002/cptc.202300177
- 24. Нечипоренко А.П. Донорно-акцепторные свойства поверхности твердофазных систем. Индикаторный метод. СПб.: Лань, 2021. 284 с.
- 25. Bauer J. // Phys. Status Solidi. 1977. V. 39. № 2. P. 411. http://dx.doi.org/10.1002/pssa.2210390205
- 26. Cornell R.M., Schwermann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. [S.I.]: Wiley-VCH Verlag GmbH & Co. KGaA, 2003. 664 p.
- 27. Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. New York: John Wiley & Sons, 2001. 216 p.
- 28. Patnaik S.P., Behera A., Martha S. et al. // J. Mater. Sci. 2019. V. 54. P. 5726. https://doi:10.1007/s10853-018-03266-x
- 29. Oppenlander T. Photochemical purification of water and air. Weinheim: Wiley-VCH, 2007. 368 c.
- 30. Smadil A., Berkani M., Merouane F. et al. // Chemosphere. 2021. V. 266. P. 129158. https://doi.org/10.1016/j.chemosphere.2020.129158
- 31. Bulyga D.V., Evstropiev S.K. // Optics and Spectroscopy. 2022. V. 130. № 9. P. 1176. http://dx.doi.org/10.21883/EOS.2022.09.54839.3617-22