RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Influence of Surfactant on Thermal Stability of Mechanically Synthesized Phase of TiSiC

PII
S00444453725050146-1
DOI
10.31857/S00444453725050146
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 5
Pages
790-799
Abstract
Influence of stearic acid and graphite additives during mechanical alloying of titanium and silicon in petroleum ether on the structural-phase state and stability of titanium carbosilicide during annealing up to 1300°C is studied. Barrier layers on the particles formed in the presence of surfactants are shown to enhance stability of carbosilicide more effectively than graphite does. Surfactant additives promote the formation of additional silicon-containing phase and more efficient sintering of particles.
Keywords
механосплавление титан кремний ПАВ карбосилициды титана термическая стабильность
Date of publication
15.11.2024
Year of publication
2024
Number of purchasers
0
Views
10

References

  1. 1. Gao N.F., Li J.T., Zhang D., Miyamoto Y. // J. Europ. Ceram. Soc. 2002. V. 22. P. 2365. https://doi.org/10.1016/S0955-2219 (02)00021-3
  2. 2. Ghosh N.C. Synthesis and Tribological Characterization of in-situ Spark Plasma Sintered Ti3SiC2 and ­Ti3SiC2-TiC Composites. PhD theses. 2012. Oklahoma State University. https://shareok.org/bitstream/handle/11244/9936/Ghosh_okstate_0664M_12424.pdf?sequence=1&isAllowed=y
  3. 3. Chahhou B., Roger J. // Ceram. Int. 2022. V. 48(23A). P. 34635. https://doi.org/10.1016/j.ceramint.2022.08.051
  4. 4. Kero I. Ti3SiC2 Synthesis from TiC and Si Powders. PhD theses. 2010. Luleå University of Technology. https://doi.org/10.1002/9780470456361.ch3
  5. 5. Sabooni S., Karimzadeh F., Abbasi M.H. // Bull. Mater. Sci. 2012. V. 35(3). P. 439. https://doi.org/10.1007/s12034-012-0298-2
  6. 6. Thom A.J., Kim Y., Akinc M. // MRS Online Proceedings Library 1992. V. 288. P. 1037. https://doi.org/10.1557/PROC288-1037
  7. 7. Tang Z., Williams J.J., Thom A.J., Akinc M. // Intermetallics. 2008. V. 16. P. 1118. DOI: 10.1016/j.intermet.2008.06.013
  8. 8. Williams J.J., Akinc M. // Oxidation of Metals. 2002. V. 58(1/2). P. 57. https://doi.org/10.1023/A:1016012507682
  9. 9. Katz A.P., Lipsitt H.A., Mah T., Mendiratta M.G. // J. Mater. Sci. 1983. V. 18. P. 1983. https://doi.org/10.1007/BF00554991
  10. 10. Niu J., Sha J., Yang D. // Physica E. 2004. V. 23. P. 131. DOI: 10.1016/j.physe.2004.01.013
  11. 11. Pourebrahim A., Baharvandi H., Foratirad H., Ehsani N. // J. Alloys Compd. 2019. V. 789. P. 313. https://doi.org/10.1016/j.jallcom.2019.03.062
  12. 12. Thom A.J., Akinc M. // Report. 1995. DOI: 10.2172/106642 fatcat: bllt7korkjft7ey5uddxjpxse4
  13. 13. Atazadeh N., Heydari M.S., Baharvandi H.R., Ehsani N. // Int. J. Refract. Met. Hard Mater. 2016. V. 61. P. 67. http://dx.doi.org/10.1016/j.ijrmhm.2016.08.003
  14. 14. Kasraee K., Yousefpour M., Tayebifard S.A. // J. Alloys Compd. 2019. V. 779. P. 942. https://doi.org/10.1016/j.jallcom.2018.11.319
  15. 15. Wang L., Jiang W., Qin C., Chen L. // J. Mater. Sci. 2006. V. 41. P. 3831. DOI: 10.1007/s10853-005-5159-6
  16. 16. Lihua H., Yiying Y., Huawei G. // Wuhan Univ. J. National Sci. 1998. V. 3(4). P. 433. https://doi.org/10.1007/BF02830045
  17. 17. Hong J., Lee S., Lee S., et al. // Nanoscale. 2014. V. 6. P. 7503. https://doi.org/10.1039/C3NR06771H
  18. 18. Chang C., Yee D.S., Petkie R. // Appl. Phys. Letters 1989. V. 54. P. 2545. DOI: 10.1063/1.101045
  19. 19. An B.-S., Kwon Y., Oh J.-S., et al. // ACS Appl. Mater. Interfaces 2020. V. 12. P. 3104. DOI: 10.1021/acsami.9b15562
  20. 20. Luong T.K.P., Le Thanh V., Ghrib A., et al. // Phys. Scr. 2019. V. 94. P. 085803. https://doi.org/10.1088/1402-4896/ab182b
  21. 21. Govindarajan S., Moore J.J., Disam J., Suryanarayana C. // Met. Mater. Trans. A. 1999. V. 30. P. 799. https://doi.org/10.1007/s11661-999-1012-x
  22. 22. Kim I.-S., Shim C.-E., Kim S.W., et al. // Adv. Mater. 2023. V. 35. P. 2204912. DOI: 10.1002/adma.202204912
  23. 23. Syugaev A.V., Yazovskikh K.A., Lomayeva S.F., et al. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 622. P. 126692. https://doi.org/10.1016/j.colsurfa.2021.126692
  24. 24. Eryomina M.A., Lomayeva S.F. // Adv. Powd. Techn. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  25. 25. Bolokang A.S., Motaung D.E., Arendse C.J., Muller T.F.G. // Adv. Powder Technol. 2015. V. 26. P. 169. http://refhub.elsevier.com/S0921-8831 (20)30066-2/h0005
  26. 26. Wan Y., Sun B., Liu W., Qi C. // J. Sol-Gel. Sci. Technol. 2012. V. 61. P. 558. DOI: 10.1007/s10971-011-2659-5
  27. 27. Miragliotta J., Benson R.C., Phillips T.E. // MRS Online Proceedings Library (OPL). 1996. V. 445. P. 217. https://doi.org/10.1557/PROC445-217
  28. 28. Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
  29. 29. Eryomina M.A., Lomayeva S.F., Demakov S.L. // J. Sol. St. Chem. 2020. V. 290. P. 121575. https://doi.org/10.1016/j.jssc.2020.121575
  30. 30. Eremina M.A., Lomaeva S.F., Burnyshev I.N., et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1274. https://doi.org/10.1134/S0036023618100066
  31. 31. Eryomina M.A., Lomayeva S.F.// Adv. Powd. Technol. 2020. V. 31. P. 1789. https://doi.org/10.1016/j.apt.2020.02.014
  32. 32. Yan Z.H., Oehring M., Bormann R. // J. Appl. Phys. 1992. V. 72(6). P. 2478. https://doi.org/10.1063/1.351594
  33. 33. Sokolova E.I., Martirosyan N.A., Nersesyan M.D. // Russ. J. Inorg. Chem. 1981. V. 26(7). P. 1949. http://refhub.elsevier.com/S0921-8831 (20)30066-2/h0055
  34. 34. Ngai T.L., Kuang Y., Li Y. // Ceram. Int. 2012. V. 38. P. 463. https://doi.org/10.1016/j.ceramint.2011.07.028
  35. 35. Radhakrishnan R., Bhaduri S.B., Henager C.H. // 1995 International Conference and Exhibition on Powder Metallurgy and Particulate Materials At: Seattle, WA Volume: 3, pages 13/129–13/137.
  36. 36. Zueva L.V., Gusev A.I. // Physics of the Solid State. 1999. V. 41(7). P. 1134. (in Russ.).
  37. 37. Turchanin A.G., Turchanin M.A. Thermodynamics of Refractory Carbides. M.: Metallurgy, 1991. 352 p. (in Russ.)
  38. 38. Cao Z., Xie W., Jung I., Du G., Qiao Z. Critical Evaluation and Thermodynamic Optimization of the Ti-C-O System and its Applications to Carbothermic TiO2 Reduction Process // Met. Mater. Transact. B. 2015. V. 46. P. 1782. DOI: 10.1007/s11663-015-0344-8
  39. 39. Zhilyaev V.A., Patrakov E.I. // Powder Metallurgy and Functional Coatings 2014. № 3. P. 49. (in Russ.) https://doi.org/10.17073/1997-308X2014-3-49-54
  40. 40. Alyamovsky S.I., Zainulin Yu.G., Shveikin G.P. Oxycarbides and Oxynitrides of Metals IVA and VA Subgroups. M.: Nauka, 1981. 144 p. (in Russ.)
  41. 41. Williams J.J. Structure and High-Temperature Properties of Ti5Si3 with Interstitial Additions // Retrospective Theses and Dissertations. 1999. 12494. https://lib.dr.iastate.edu/rtd/12494
  42. 42. Williams J.J., Ye Y.Y., Kramer M.J., et al. // Intermetallics. 2000. V. 8. P. 937.
  43. 43. Thom A.J., Young V.G., Akinc M. // J. Alloys Compd. 2000. V. 296. P. 59. https://doi.org/10.1016/S0925-8388 (99)00533-2
  44. 44. Xiong Y., Wang W., Ye Z., et al. // J. Europ. Ceram. Soc. 2023. V. 43(9). P. 3988. https://doi.org/10.1016/j.jeurceramsoc.2023.03.030
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library