RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Synthesizing metal-organic UiO-66 framework in microwave fields based on polyethylene terephthalate waste for adsorptive removal of tartrazine food dye from aqueous solutions

PII
S0044453725010099-1
DOI
10.31857/S0044453725010099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 1
Pages
97-106
Abstract
The sample of metal-organic UiO-66 framework (Zr6O4(OH)4bdc, bdc = benzene-1,4-dicarboxylate/terephthalate), which is a promising adsorbent of persistent organic pollutants from aqueous medium, is obtained by the original method in the medium of unconventional “green” solvent, triethylene glycol (TEG), under conditions of microwave activation of reaction mass at atmospheric pressure according to one-step approach. PET-UiO-66 material is synthesized using polymer waste, viz. recycled polyethylene terephthalate (PET), as a source of organic linker (terephthalic or benzene-1,4-dicarboxylic acid, H2bdc) for framework formation. Its adsorption activity is first studied in the adsorption removal of tartrazine food dye (E-102) from aqueous solutions. It is found that the kinetics of the adsorption process obeys the pseudo-second-order model, and its thermodynamics corresponds to the Langmuir model.
Keywords
металл-органические каркасы (МОК) полиэтилентерефталат (ПЭТ) UiO-66 адсорбция из водной среды кинетика
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Chaturvedi P., Shukla P., Giri B.S. et al. // Environmental Res. 2021. T. 194. P. 110664.
  2. 2. Ezzatahmadi N., Marshall D.L., Hou K. et al. // J. Environ. Chem. Eng. 2019. V. 7. P. 102955.
  3. 3. Tang J., Wang T., Xia H. et al. // Sustainability. 2024. V. 16. P. 2042.
  4. 4. Ariza-Tarazona M.C., Siligardi C., Carrėon-Loˇpez H.A. et al. // Marin. Pollut. Bull. 2023. V. 193. P. 115206.
  5. 5. Yang R.X., Bieh Y.T., Chen C.H. et al. // ACS Sustainable Chem. Eng. 2021. V. 9. P. 6541.
  6. 6. Kartik S., Balsora H.K., Sharma M. et. al. // Therm. Sci. Eng. Progr. 2022. V. 32. P. 101316.
  7. 7. Ferreira M.M., Silva E.A., Cotting F. et. al. // Corros. Eng. Sci. Technol. 2021. V. 56. P. 199.
  8. 8. Kaur G., Uisan K., Ong K.L. et. al. // Cur. Opin. in Green and Sust. Chem. 2018. V. 9 P. 30.
  9. 9. Yang R.X., Bieh Y.T., Chen C.H. et. al. // ACS Sustainable Chem. Eng. 2021. V. 9. P. 6541.
  10. 10. Rowsell J.L., Yaghi O.M. // Microporous and Mesoporous Mat. 2004. V. 73. P. 3.
  11. 11. Ghazvini M.F., Vahedi M., Nobar S.N., et al. // J. Environ. Chem. Eng. 2021. V. 9. P. 104790.
  12. 12. Ihsanullah. I. // Curr. Opin. Environ. Sci. Health. 2022. V. 26. P. 100335.
  13. 13. Obeso J.L., Flores J.G., Flores C.V. et al. // Chem. Commun. 2023. V. 59. P. 10226.
  14. 14. Baumann A.E., Burns D.A., Liu B. et al. // Commun Chem. 2019. V. 2. P. 86.
  15. 15. Mendes R.F., Figueira F., Leite J.P. et al. // Chem. Soc. Rev. 2020. V. 49. P. 9121.
  16. 16. Isaeva V.I., Vedenyapina M.D., Kurmysheva A.Y. et. al. // Molecules. 2021. V. 26. P. 6628.
  17. 17. Cavka J., Jakobsen S., Olsbye U. et al. // JASC Com. 2008. V. 140. P. 42.
  18. 18. Kazemi A., Moghadaskhou F., Pordsari M.A. et al. // Sci Rep. 2023. V. 13. № 19891.
  19. 19. Ahmadijokani F., Molavi H., Rezakazemi M. et al. // Prog. Mater. Sci. 2022. V. 125. P. 100904.
  20. 20. Rego R.M., Kurkuri M.D., Kigga M. // Chemosphere. 2022. V. 302. P. 134845.
  21. 21. Ramanayaka S., Vithanage M., Sarmah A. et al. // RSC Adv. 2019. V. 9. P. 34359.
  22. 22. Cao Z., Fu X., Li H. et al. // ACS Sustain. Chem. Eng. 2023. V. 11. P. 15506.
  23. 23. Shanmugam M., Chuaicham C., Augustin A. et al. // New J. Chem. 2022. V. 46. P. 15776.
  24. 24. Lo S.H., Raja D.S., Chen C.-W. et. al. // Dalton Trans. 2016. V. 45. P. 9565.
  25. 25. Dyosiba X., Ren J., Musyoka N.M. et al. // Ind. Eng. Chem. Res. 2019. V. 58. P. 17010.
  26. 26. Semyonov O., Kogolev D., Mamontov G. et al. // Chem. Eng. J. 2022. V. 431. P. 133450.
  27. 27. Selahle S.K., Nqombolo A., Nomngongo P.N. // Sci Rep. 2023. V. 13. P. 6808.
  28. 28. Waribam P., Katugampalage T.R., Opaprakasit P. et. al. // Chem. Eng. J. 2023. V. 473. P. 145349.
  29. 29. Oymak T., Tokalıoglu S., Cam S. et al. // Food Additiv. Contamin. 2020. V. 37. P. 731.
  30. 30. Singh H., Goyal A., Bhardwaj S. et al. // Mater. Sci. Eng. 2023. V. 288. P. 116165.
  31. 31. Качала В.В., Хемчян Л.Л., Кашин А.С. и др. // Успехи химии. 2013. Т. 82. С. 648.
  32. 32. Кашин А.С., Анаников В.П. // Изв. АН Сер. Хим. 2011. Т. 12. С. 2551.
  33. 33. Tsyganenko A.A., Filimonv V.N. // J. Mol. Struct. 1972. V. 5. P. 477.
  34. 34. Ivanov A.V., Kustov L.M. // Russ. Chem. Bull. 2000. V. 49. P. 39.
  35. 35. Köck E.M., Kogler M., Götsch T. et. al. // Dalton Trans. 2017. V. 46. P. 4554.
  36. 36. Jung K.D., Bell A. // J. Catal. 2000. V. 193. P. 207.
  37. 37. Ouyang F., Kondo J.N. // JCS Faraday Trans. 1996. V. 92. P. 4491.
  38. 38. Cheng X., Zhang A., Hou K. et. al. // Dalton Trans. 2013. V. 42. P. 13698.
  39. 39. Huang J., Yan Z. // Langmuir. 2018. V. 34. P. 1890.
  40. 40. Lagergren S. // Sakademiens Handl. 1898. V. 24. P. 1.
  41. 41. Ho Y.S., Mckay G. // Proc. Biochem. 1999. V. 34. P. 451.
  42. 42. Zeldowitsch J. // Acta Physicochim. 1934. V. 1. P. 364.
  43. 43. Langmuir I. // Part I. Solids. 1916. V. 184. P. 102.
  44. 44. Dippong T., Andrea E., Cadar O. et. al. // J. of Alloys and Comp. 2020. V. 849. P. 156695.
  45. 45. Srivastava V., Sharma Y.C., Sillanpää M. // Applied Surf. Sci. 2015. V. 338. P. 42.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library