RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

On applicability of embedded atom model (EAM) potentials to liquid silicon and germanium

PII
S0044453725010122-1
DOI
10.31857/S0044453725010122
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 1
Pages
122-134
Abstract
Potentials of the embedded atom model (EAM) for liquid silicon and germanium are proposed. The potentials are calculated from diffraction data using the Schommers algorithm and presented in the form of tables and piecewise continuous polynomials. Each pairwise contribution to the potential has a form close to a hard-sphere one with a step down. The properties of liquid Si and Ge at temperatures up to 2000 K are calculated, viz. the density, energy, bulk modulus, and self-diffusion coefficients. The agreement with the experiment is noted to be good. The bond direction is found to almost completely disappear after melting for ordinary densities of liquid Si and Ge. The bond direction is assumed to be able to appear at heating and when the density of melts is decreased by 2–3 times.
Keywords
жидкий кремний германий направленность связи плотность энергия сжимаемость самодиффузия
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Waseda Y. The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids. N.Y.: McGraw-Hill, 1980.
  2. 2. Funamori N., Tsuji K. // Phys. Rev. Lett. 2002. V. 88. P. 255508.
  3. 3. Demchuk T., Bryk T., Seitsonen A.P. et al. // arXiv:2009.00834. https://doi.org/10.48550/arXiv.2009.00834
  4. 4. Assael M.J., Armyra I.J., Brillo J. et al. // J. Phys. Chem. Ref. Data. 2012. V. 41. № 3. https://doi.org/10.1063/1.4729873
  5. 5. Глазов В.М., Чижевская С.Н, Глаголева Н.Н. Жидкие полупроводники. М.: Наука, 1967.
  6. 6. Гурвич Л.А., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. Т. 2. Кн.2. М.: Наука, 1979.
  7. 7. Desai P.D. // J. Phys. Chem. Ref. Data. 1986. V. 15. № 3. P. 967.
  8. 8. Текучев В.В. Акустические и физико-химические свойства электронных расплавов. Волгоград. 2016.
  9. 9. Регель А.Р., Глазов В.М. Физические свойства электронных расплавов. М.: Наука, 1980.
  10. 10. Weis H., Kargl F., Kolbe M. et al. // J. Phys.: Condens. Matter. 2019. V. 31. P. 455101.
  11. 11. Luo Sheng-Nian, Ahrens T.J., Asimow P.D. // J. Geophys. Res. 2003. V. 108. № B9. P. 2421. https://doi.org/10.1029/2002JB002317.
  12. 12. Oleynik I.I., Zybin S.V., Elert M.L., White C.T. // CP845 “Shock Compression in Condensed Matter”. Ed. M.D. Furnish et al. 2005. P. 413.
  13. 13. Stillinger F.H., Weber T.A. // Phys. Rev. B. 1985. V. 31. P. 5262.
  14. 14. Dziedzic J., Principi E., Rybicki J. // J. Non-Cryst. Solids. 2006. V. 352. P. 4232.
  15. 15. Jadhav P.P., Dongale T.D., Vhatkar R.S. // AIP Conference Proceedings 2162, 020038 (2019). https://doi.org/10.1063/1.5130248
  16. 16. Tersoff J. // Phys. Rev. B. 1988. V. 38. P. 9902; 1989. V. 39. P. 5566.
  17. 17. Ishimaru M., Yoshida K., Motooka T. // Phys. Rev. B. 1996. V. 53. № 11. P. 7176.
  18. 18. Cook S.J., Clancy P. // Phys. Rev. B. 1993. V. 47. P. 7686.
  19. 19. Bazant M.Z., Kaxiras E. // Phys. Rev. Lett. 1996. V. 77. P. 4370.
  20. 20. Luo J., Zhou Ch., Cheng Y., Liu L. // J. Crystal Growth. 2020. P. 1. https://doi.org/10.1016/j.jcrysgro.2020.125785
  21. 21. Štich I., Car R., Parrinello M. // Phys. Rev. B. 1991. V. 44. P. 4262.
  22. 22. NIST. IPS Interatomic Potentials Repository: www.ctcms.nist.gov/potentials/refs.html
  23. 23. Baskes M.I. // Phys. Rev. B. 1992. V. 46. P. 2727. https://doi.org/10.1103/PhysRevB.46.2727
  24. 24. Baskes M.I., Nelson J.S., Wright A.F. // Phys. Rev. B. Condens. Matter. 1989. V. 40. № 9. P. 6085. https://doi.org/10.1103/physrevb.40.6085
  25. 25. Starikov S.V., Lopanitsyna N.Yu., Smirnova D.E., Makarov S.V. // Computational Materials Science. 2018. V. 142. P. 303.
  26. 26. Starikov S., Gordeev I., Lysogorskiy Yu. et al. // Computational Materials Science. 2020. V. 184. P. 109891. https://doi.org/10.1016/j.commatsci.2020.109891
  27. 27. Daw M.S., Baskes M.I. // Phys. Rev. B. 1984. V. 29. № 12. P. 6443.
  28. 28. Schommers W. // Phys. Rev. A. 1983. V. 28. P. 3599.
  29. 29. Belashchenko David K. Liquid Metals. From Atomistic Potentials to Properties, Shock Compression, Earth’s Core and Nanoclusters. NOVA Science Publushers. NY.
  30. 30. Zhu Z.G., Liu C.S. // Phys. Rev. B. 2000. V. 61. № 14. P. 9322.
  31. 31. Hayashi M., Yamada H., Nabeshima N., Nagata K. // Int. J. Thermophysics. 2007. V. 28. № 1. P. 83. https://doi.org/10.1007/s10765-007-0151-9
  32. 32. Chelikowsky J.R., Troullier N., Binggeli N. // Phys. Rev. B. 1994. V. 49. P. 114.
  33. 33. Yu W., Wang Z.Q., Stroud D. // Phys. Rev. B. 1996. V. 54. № 19. P. 13946.
  34. 34. Белащенко Д.К // Журн. физ. химии. 2019. T. 93. № 6. C. 877.
  35. 35. Speedy R.J. // Mol. Physics. 1987. V. 62. № 2. P. 509.
  36. 36. Бeлaщeнкo Д.K. // Physics–uspekhi. 2013. V. 183. № 12. P. 1176.
  37. 37. Alteholz Th., Hoyer W. // J. Non-Cryst. Solids. 1999. V. 250–252. P. 48.
  38. 38. Petkov V., Takeda S., Waseda Y., Sugiyama K. // J. Non-Cryst. Solids. 1994. V. 168. P. 97.
  39. 39. Sato Y., Nishizuka T., Tachikawa T. et al. // High Temperatures – High Pressures. 2000. V. 32. P. 253.
  40. 40. Tsuchiya Y. // J. Phys. Soc. Japan. 1991. V. 60. № 1. P. 227.
  41. 41. Masaki T., Itami T. // “Modeling and Precise Experiments of Diffusion Phenomena in Melts under Microgravity” Annual Reports. 2002, NASDA-TMR-030005E.
  42. 42. Kato M., Minowa S. // Trans. Iron Steel Institute of Japan. 1969. V. 9. P. 39.
  43. 43. Tsuji K., Mori T., Hattori T. et al. // 2000B0087-CD-np BL04B1.
  44. 44. Kōga J., Okumura H., Nishio K. et al. // Phys. Rev. B. 2002. V. 66. P. 064211.
  45. 45. Kishimura H., Matsumoto H., Thadhani N.N. // J. Physics: Conference Series. 2010. V. 215. Р. 012145. https://doi.org/10.1088/1742-6596/215/1/012145
  46. 46. Ding K., Andersen H.C. // Phys. Rev. B. 1986. V. 34. № 10. P. 6987.
  47. 47. Kim Eun Ha, Shin Young-Han, Lee Byeong-Joo // Computer Coupling of Phase Diagrams and Thermochemistry. 2008. V. 32. P. 34.
  48. 48. Zuo Y., Chen C., Li X. et al. // J. Phys. Chem. A. 2019. V. 124. № 4. P. 731. https://doi.org/10.1021/acs.jpca.9b08723
  49. 49. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251.
  50. 50. Белащенко Д.К. // Кристаллография. 1998. Т. 43. № 3. С. 400.
  51. 51. Kulkarni R.V., Aulbur W.G., Stroud D. // Phys. Rev. B. 1997. V. 55. P. 6896.
  52. 52. Lucas L.D., Urbain G. // C. r. Acad. Sci. 1962. V. 255. № 19. P. 2414.
  53. 53. Munejiri S., Shimojo F., Hoshino K., Itami T. // NASDA, Tsukuba 305–8505, Japan
  54. 54. Hoshino K. // J. Phys.: Condens. Matter. 2009. V. 21. No 47. P. 474212. https://doi.org/10.1088/0953-8984/21/47/474212
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library