- PII
- S0044453725010157-1
- DOI
- 10.31857/S0044453725010157
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 1
- Pages
- 153-160
- Abstract
- The behavior of a smooth gold electrode in the medium of bridged 1,2,4-trioxalane in acetonitrile is studied by cyclic voltammetry and gravimetry methods. It is found that during the cathodic process, the reduction of the peroxide bond in the bridged 1,2,4-trioxalane molecule takes place at the electrode surface followed by the formation of a diketone moiety. During anodic oxidation, the formation of colloidal gold particles is detected.
- Keywords
- циклическая вольтамперометрия катодное восстановление анодное окисление 1,2,4-триоксалан золото
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Ann Casteel D. // Nat. Prod. Rep. 1999. V. 16. № 1. P. 55. https://doi.org/10.1039/A705725C
- 2. Phillipson D.W., Rinehart K.L. Jr. // J. Am. Chem. Soc. 1983. V. 105. № 26. P. 7735–7736. https://doi.org/10.1039/A705725C
- 3. Yaremenko I.A., Radulov P.S., Belyakova Y.Y. et al. // Chem. Europ. J. 2020. V. 26. № 21. P. 4734. https://doi.org/10.1002/chem.201904555
- 4. Yaremenko I.A., Syromyatnikov M.Y., Radulov P.S. et al. // Molecules. 2020. V. 25. № 8. P. 1954. https://doi.org/10.3390/molecules25081954
- 5. Panic G., Duthaler U., Speich B., Keiser J. // Int. J. Parasitol. Drugs Drug. Resist. 2014. V. 4. № 3. P. 185. https://doi.org/10.1016/j.ijpddr.2014.07.002
- 6. Vil’ V.A., Yaremenko I.A., Ilovaisky A.I., Terent’ev A.O. // Synthesis and Reactions. Molecules. 2017. V. 22. № 11. P. 1881. https://doi.org/10.3390/molecules22111881
- 7. Kiuchi F., Itano Y., Uchiyama N. et al. // J. Am. Pharm. Assoc. 2002. V. 65. № 4. P. 509. https://doi.org/10.1021/np010445g
- 8. Wenzel D.G., Smith C.M. // J. Am. Pharm. Assoc. Am. Pharm. Assoc. 1958. V. 47. № 11. P. 792. https://doi.org/10.1002/jps.3030471109
- 9. Herrmann L., Yaremenko I.A., Çapcı A. et al. // Chem. Med. Chem. 2022. V. 17. № 9. https://doi.org/10.1002/cmdc.202200005
- 10. Coghi P., Yaremenko I.A., Prommana P. et al. // Ibid. 2022. V. 17. № 20. https://doi.org/10.1002/cmdc.202200328
- 11. Slade D., Galal A.M., Gul W. et al. // Bioorg. Med. Chem. 2009. V. 17. № 23. P. 7949. https://doi.org/10.1016/j.bmc.2009.10.019
- 12. Yaremenko I.A., Coghi P., Prommana P. et al. // Chem. Med. Chem 2020. V. 15. № 13. P. 1118–1127. https://doi.org/10.1002/cmdc.202000042
- 13. Yaremenko I.A., Syroeshkin M.A., Levitsky D. et al. // Med. Chem. Res. 2017. V. 26. № 1. P. 170. https://doi.org/10.1007/s00044-016-1736-2
- 14. Tiwari M.K., Chaudhary S. // Med. Res. Rev. 2020. V. 40. № 4. P. 1220. https://doi.org/10.1002/med.21657
- 15. Uddin A., Chawla M., Irfan I. et al. // RSC Med. Chem. 2020. V. 12. № 1. P. 24. https://doi.org/10.1039/d0md00244e
- 16. Woodley C.M., Amado P.S.M., Cristiano M.L.S., O’Neill P.M. // Med. Res. Rev. 2021. V. 41. № 6. P. 3062. https://doi.org/10.1002/med.21849
- 17. Otoguro K., Iwatsuki M., Ishiyama A. et al. //Phytochem. 2011. V. 72. № 16. P. 2024. https://doi.org/10.1016/j.phytochem.2011.07.015
- 18. Perry T.L., Dickerson A., Khan A.A. et al. // Tetrahedron. 2001. V. 57. № 8. P. 1483. https://doi.org/10.1016/S0040-4020 (00)01134-0
- 19. Kumar M., Gehlot P.S., Parihar D. et al. // Eur. Pol. J. 2021. V. 152. https://doi.org/10.1016/j.eurpolymj.2021.110448
- 20. Lee M., Minoura Y. // J. Chem. Soc., Faraday Trans. 1978. V. 74. № 0. P. 1726. https://doi.org/10.1039/f19787401726
- 21. Przybysz-Romatowska M., Haponiuk J., Formela K. // Polymers. 2020. V. 12. № 1. https://doi.org/10.3390/polym12010228
- 22. Радулов П.С., Белякова Ю.Ю., Демина А.А. и др. // Изв. АН. Сер. Хим. 2019. Т. 68. № 6. С. 1289–1292. (Radulov P.S., Belyakova Y.Y., Demina A.A. et al. // Russ. Chem. Bull. 2019. V. 68. № 6. P. 1289. https://doi.org/10.1007/s11172-019-2555-7)
- 23. Matsumoto A., Maruoka K. // Bull. Chem. Soc. Jpn. 2020. V. 94. № 2. P. 513. https://doi.org/10.1246/bcsj.20200321
- 24. Gemki M., Taspinar Ö., Adler A. et al. // Org. Proc. Res. Dev. 2021. V. 25. № 12. P. 2747. https://doi.org/10.1021/acs.oprd.1c00364
- 25. Zdvizhkov A., Terent’ev A., Radulov P. et al. // Tetrahedron Lett. 2016. V. 57. № 8. https://doi.org/10.1016/j.tetlet.2016.01.061
- 26. Rountree E.S., McCarthy B.D., Eisenhart T.T., Dempsey J.L. // Inorg. Chem. 2014. V. 53. № 19. P. 9983.
- 27. Savéant J.-M. // Advances in Physical organic chemistry. 2000. V. 35. P. 117. https://doi.org/10.1016/s0065-3160 (00)35013-4
- 28. Magri D.C., Workentin M.S. // Org. Biomol. Chem. 2008. V. 6. № 18. P. 3354. https://doi.org//10.1039/b809356c
- 29. Yaremenko I.A., Coghi P., Prommana P. et al. // Chem. Med. Chem. 2020. V. 15. № 13. P. 1118. https://doi.org//10.1002/cmdc.202000042
- 30. Magri D.C., Workentin M.S. // Molecules. 2014. V. 19. № 8. P. 11999. https://doi.org//10.3390/molecules190811999
- 31. Magri D.C., Workentin M.S. // Chemistry. 2008. V. 14. № 6. P. 1698. https://doi.org//10.1002/chem.200701740
- 32. Веденяпина М.Д., Симакова А.П., Платонов М.М. и др. // Журн. физ. химии. 2013. Т. 87. № 3. С. 418. (Vedenyapina M.D., Simakova A.P., Platonov M.M. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024413030333)
- 33. Magri D.C., Donkers R.L., Workentin M.S. // J. Photochem. Photobiol., A. 2001. V. 138. № 1. P. 29. https://doi.org//10.1016/S1010-6030 (00)00386-5
- 34. Stringle D.L., Magri D.C., Workentin M.S. // Chemistry. 2010. V. 16. № 1. P. 178. https://doi.org//10.1002/chem.200902023
- 35. Веденяпина М.Д., Скундин А.М., Виль В.А. и др. // Журн. физ. химии. 2020. Т. 94. № 4. С. 624–628. (Vedenyapina M.D., Skundin A.M., Vil’ V.A. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024420040238)
- 36. Веденяпина М.Д., Скундин А.М., Виль В.А. и др. // Журн. физ. химии. 2021. Т. 95. № 1. С. 147–151. (Vedenyapina M.D., Skundin A.M., Vil’ V.A. et al. // Russ. J. Phys. Chem. https://doi.org//10.1134/S0036024421010313)
- 37. Веденяпина М.Д., Виль В.А., Терентьев А.О., Веденяпин А.А. // Изв. АН. Сер. Хим. 2017. Т. 66. № 11. С. 2044–2047. (Vedenyapina M.D., Vil’ V.A., Terent’ev A.O., Vedenyapin A.A. // Russ. Chem. Bull. 2017. V. 66. № 11. С. 2044.)
- 38. Поляков М.В., Веденяпина М.Д., Скундин А.М. и др. // Журн. физ. химии. 2023. Т. 97. № 7. C. 972. https://doi.org//10.31857/S0044453723070221 (Polyakov M.V., Vedenyapina M.D., Skundin A.M. et al. // Russ. J. Phys. Chem. V. 97. P. 1438. https://doi.org//10.1134/S0036024423070221)
- 39. Batchelor-McAuley C., Compton R.G. // J. Electroan. Chem. 2012. V. 669. P. 73. https://doi.org//10.1016/j.jelechem.2012.01.016
- 40. Salah N., Lanez T. // Int. Lett. Chem. Phys. Astron. 2013. V. 4. P. 37.
- 41. Поляков М.В., Веденяпина М.Д., Скундин А.М. и др. // Изв. АН. Сер. хим. 2024. Т. 74. № 4. С. 863.