RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Production of methanol from СО2 on Cu-Zn-catalysts applied on commercial supports: impact of support and reaction conditions

PII
S0044453725020072-1
DOI
10.31857/S0044453725020072
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
226-236
Abstract
Catalytic properties of Cu-Zn-catalysts on various commercial supports such as Al2O3, SiO2, ZrO2(La), TiO2, ZnO, and activated carbon in the reaction of CO2 hydrogenation with methanol production are studied. The CuZn/Al2O3 catalyst is found to show the highest CO2 conversion; the highest selectivities to methanol equaling 99% and 97.5% are observed in CuZn/ZrO2(La) and CuZn/SiO2 catalysts, respectively, and high CH3OH selectivities of 90–95% are achieved in the temperature range of 175-275°C; and the CuZn/ZrO2(La) catalyst had the highest methanol productivity of 547 g/(kgcat h). The synthesized catalysts are characterized by methods of low-temperature nitrogen adsorption, X-ray phase analysis, and SEM-EDX.
Keywords
Cu–Zn-катализаторы оксид алюминия силикагель оксид циркония оксид титана уголь гидрирование диоксида углерода получение метанола утилизация диоксида углерода
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Bogdan V.I., Koklin A.E., Kustov A.L. et al. // Molecules. 2021. V. 26. P. 2883.
  2. 2. Xin Q., Maximov A.L., Liu B.Y. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 296.
  3. 3. Evdokimenko N.D., Kapustin G.I., Tkachenko O.P. et al. // Molecules. 2022. V. 27. P. 1065.
  4. 4. Matieva Z.M., Kolesnichenko N.V., Snatenkova Yu.M. et al. // J. Taiwan Inst. Chem. Eng. 2023. V. 147. P. 104929.
  5. 5. Vikanova K.V., Kustov A.L., Makhov E.A. et al. // Fuel. 2023. V. 351. P. 128956.
  6. 6. Saito M., Fujitani T., Takeuchi M. et al. // Appl. Catal. A. 1996. V. 138. P. 311.
  7. 7. Kurtz M., Wilmer H., Genger T. et al. // Catal. Lett. 2003. V. 86. P. 77.
  8. 8. Ma J., Sun N., Zhang X. et al. // Catal. Today. 2009. V. 148. P. 221.
  9. 9. Wang W., Wang S., Ma X. et al. // Chem. Soc. Rev. 2011. V. 40. P. 3703.
  10. 10. Smirnova E.M., Evdokimenko N.D., Reshetina M.V. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1395.
  11. 11. Jiang Yi., Yang H., Gao P. et al. // J. CО2 Util. 2018. V. 26. P. 642.
  12. 12. Dasireddy V.D.B.C., Likozar B. // Renew. Energ. 2019. V. 140. P. 452.
  13. 13. Meunier N., Chauvy R., Mouhoubi S. et al. // Renew. Energ. 2020. V. 146. P. 1192.
  14. 14. Fang X., Xi Y., Jia H. et al. // J. Ind. Eng. Chem. 2020. V. 88. P. 268.
  15. 15. Atsbha T.A., Yoon T., Seongho P. et al. // J. CO2 Util. 2021. V. 44. P. 101413.
  16. 16. Dement’ev K.I., Dementeva O.S., Ivantsov M.I. et al. // Pet. Chem. 2022. V. 62. P. 445.
  17. 17. Schwiderowski P., Ruland H., Muhler M. // Curr. Opin. Green Sustain. Chem. 2022. V. 38. P. 100688.
  18. 18. Niu J., Liu H., Jin Ya. // Int. J. Hydrog. Energy 2022. V. 47. P. 9183.
  19. 19. Ren M., Zhang Ya., Wang Xu. et al. // Catalysts. 2022. V. 12. P. 403.
  20. 20. Kuznetsov N.Yu., Maximov A.L., Beletskaya I.P. // Russ. J. Org. Chem. 2023. V. 58. P. 1681.
  21. 21. Kropp T., Paier J., Sauer J. // J. Catal. 2017. V. 352. P. 382.
  22. 22. Gribovskii A., Ovchinnikova E., Vernikovskaya N. et al. // Chem. Eng. J. 2017. V. 308. P. 135.
  23. 23. Losch P., Pinar A.B., Willinger M.G. et al. // J. Catal. 2017. V. 345. P. 11.
  24. 24. Wang X., Li R., Bakhtiar S. ul H. et al. // Catal. Commun. 2018. V. 108. P. 64.
  25. 25. Niu X., Gao J., Wang K. et al. // Fuel Process. Technol. 2017. V. 157. P. 99.
  26. 26. Yang L., Liu Z., Liu Z. et al. // Chin. J. Catal. 2017. V. 38 (4). P. 683.
  27. 27. Jiménez-López A., Jiménez-Morales I., Santamaría-González J. et al. // J. Mol. Catal. A. 2011. V. 335. P. 205.
  28. 28. Pirola C., Manenti F., Galli F. et al. // Chem. Eng. Trans. 2014. V. 37. P. 553.
  29. 29. Sun Q., Zhang Yu-L., Chen H.-Y. // J. Catal. 1997. V. 167. P. 92.
  30. 30. Mierczynski P., Maniecki T.P., Chalupka K. et al. // Catal. Today. 2011. V. 176. P. 21.
  31. 31. Ren H., Xu C.-H., Zhao H.-Ya. et al. // J. Ind. Eng. Chem. 2015. V. 28. P. 261.
  32. 32. Bukhtiyarova M., Lunkenbein T., Kähler K. et al. // Catal. Lett. 2017. V. 147. P. 416.
  33. 33. Zhang C., Yang H., Gao P. et al. // J. CО2 Util. 2017. V. 17. P. 263.
  34. 34. Previtali D., Longhi M., Galli F. et al. // Fuel. 2020. V. 274. P. 117804.
  35. 35. Vertepov A.E., Fedorova A.A., Batkin A.M. et al. // Catalysts. 2023. V. 13. P. 1231.
  36. 36. Sloczynski J., Grabowski R., Kozlowska A. et al. // Appl. Catal. A. 2004. V. 278. P. 11.
  37. 37. Bogdan V.I., Kustov L.M. // Mendeleev Commun. 2015. V. 25. P. 446.
  38. 38. Evdokimenko N.D., Kim K.O., Kapustin G.I. et al. // Catal. Ind. 2018. V. 10. P. 288.
  39. 39. Evdokimenko N.D., Kustov A.L., Kim K.O. et al. // Mendeleev Commun. 2018. V. 28. P. 147.
  40. 40. Kim K.O., Evdokimenko N.D., Pribytkov P.V. et al. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2422.
  41. 41. Kim K.O., Shesterkina A.A., Tedeeva M.A. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 582.
  42. 42. Igonina M., Tedeeva M., Kalmykov K. et al. // Catalysts. 2023. V. 13. P. 906.
  43. 43. Tedeeva M.A., Kustov A.L., Pribytkov P.V. et al. // Fuel. 2022. V. 313. P. 122698.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library