RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Dechlorination of chloride-sulfate solutions using ozone

PII
S0044453725020088-1
DOI
10.31857/S0044453725020088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
237-242
Abstract
The kinetic characteristics of the chlorine release reaction during oxidation of chloride ion in solutions of Na+ – H+ – HSO4 – Cl, Mg2+ – H+ – HSO4 – Cl, Zn2+ – H+ – HSO4 – Cl, Cu2+ – H+ – HSO4 – Cl, Fe3+ – H+ – HSO4 – Cl, Mg2+ – H+ – Cl, Ca2+ – H+ – Cl are found. Under similar experimental parameters, the reaction rate takes significantly different values depending on the nature of the added salt. This is due to the possibility of catalyzing the reaction of O3 with Cl(aq) cations of some metals and the formation of chloride and sulfate metal complexes, which leads to changes in the actual concentrations of reagents, as well as changes in the ozone solubility. For aqueous solutions of zinc sulfate and magnesium sulfate with concentrations of 0–1 M at temperatures of 20 and 25°C, ozone solubility, values of the Henry constant and Sechenov coefficient are found.
Keywords
озон хлорид-ион дехлорирование растворимость константа Генри сульфат цинка сульфат магния
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Lowe J.B. // Corrosion. 1961 V. 17. № 3. P. 26.
  2. 2. Wilkinson R.G. // Platinum Metals Rev. 1961. V. 5. № 4. P. 128.
  3. 3. Kolman D.G., Ford D.K., Butt D.P., Nelson T.O. // Corrosion Sci. 1997. V. 39. № 12. P. 2067.
  4. 4. Li Y., Yang Z., Yang K. et al. // Sci. Tot. Env. 2022. V. 821. P. 153174.
  5. 5. Duan L., Yun Q., Jiang G. et al. // J. Env. Management. 2024. V. 353. P. 120184.
  6. 6. Cattant F., Crusset D., Féron D. // Materials Today. 2008. V. 11. № 10. P. 32.
  7. 7. Sun B., Liu X., Liu W. et al. // Hydrometallurgy. 2020. V. 198. P. 105508.
  8. 8. Wu X., Liu Z., Liu X. // Hydrometallurgy. 2013. V. 134–135. P. 62.
  9. 9. Liu W., Zhang R., Liu Z., Li C. // Hydrometallurgy. 2016. V. 160. P. 147.
  10. 10. Xiao H.-F., Chen Q., Cheng H. et al. // J. Membrane Sci. 2017. V. 537. P. 111.
  11. 11. Pierce R.A., Campbell-Kelly R.P., Visser A.E., Laurinat J.E. // Ind. Eng. Chem. Res. 2007. V. 46. № 8. P. 2372.
  12. 12. Леванов А.В., Исайкина О.Я., Лунин В.В. // Журн. физ. химии. 2019. Т. 93. № 9. С. 1328. [Levanov A.V., Isaikina O.Y., Lunin V.V. // Russ. J. Phys. Chem. A. 2019. V. 93. № 9. P. 1677.]
  13. 13. Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Кинетика и катализ. 2003. Т. 44. № 6. С. 810. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // Kinet. Catal. 2003. V. 44. № 6. P. 740].
  14. 14. Smith R.M., Martell A.E. Critical Stability Constants. V. 4. Inorganic Complexes. New York: Plenum Press, 1976.
  15. 15. Леванов А.В., Кусков И.В., Койайдарова К.Б. и др. // Кинетика и катализ. 2005. Т. 46. № 1. С. 147. [Levanov A.V., Kuskov I.V., Koiaidarova K.B. et al. // Kinet. Catal. 2005. V. 46. № 1. P. 138.]
  16. 16. Rischbieter E., Stein H., Schumpe A. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 338.
  17. 17. Clever H.L., Battino R., Miyamoto H. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. № 3. P. 033102.
  18. 18. Конник Э.И. // Успехи химии. 1977. Т. 46. № 6. С. 1097. [Konnik E.I. // Russ. Chem. Rev. 1977. V. 46. № 6. P. 577].
  19. 19. Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427].
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library