RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Influence of environment and intramolecular vibrations on the kinetics of occupancy of the triplet state of the donor molecule

PII
S0044453725020099-1
DOI
10.31857/S0044453725020099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
243-250
Abstract
Within the framework of the stochastic approach, a numerical study of the kinetics of occupancy of the triplet state of an electron donor molecule caused by photoinduced electron transfer from the donor to the paramagnetic acceptor and back is performed. The conditions are determined, and a general strategy for achieving the maximum efficiency of triplet molecule accumulation induced by the electron transfer is stated. Solvents with fast dielectric relaxation are shown to contribute to increasing the efficiency of the process involved.
Keywords
фотоиндуцированный перенос электрона неравновесность среды триплетные состояния донорно-акцепторные пары внутримолекулярные колебания
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Фотосинтез / Под ред. Говинджи. М.: Мир, 1987. Т. 1. 727 с.
  2. 2. Mims D., Herpich J., Lukzen N.N. et al. // Science. 2021. V. 374. P. 1470. https://doi.org/10.1126/science.abl4254
  3. 3. Багрянский В.А., Боровков В.И, Молин Ю.Н. // Успехи химии. 2007. Т. 76. С. 535. https://doi.org/10.1070/RC2007v076n06ABEH003715 [Bagryansky V.A., Borovkov V.I., Molin Yu.N. // Rus. Chem. Reviews. 2007. V. 76. P. 493. https://doi.org/10.1070/RC2007v076n06ABEH003715]
  4. 4. Овченкова Е.Н., Бичанa Н.Г., Ломова Т.Н. // Журн. физ. химии. 2022. Т. 96. № 4. С. 502. https://doi.org/10.31857/S0044453722040252
  5. 5. Buchachenko A.L., Step E.N., Ruban V.L., Turro N.J. // Chem. Phys. Lett. 1995. V. 223. P. 315.
  6. 6. Иванов А.И., Михайлова В.А., Феськов С.В. // Журн. физ. химии. 1998. Т. 72. № 11. С. 2027. [Ivanov A.I., Mikhailova V.A., Fes’kov S.V. // Rus. J. of Phys. Chem. A. 1998. V. 72. № 11. P. 1843.]
  7. 7. Грампп Г., Иванов А.И., Кучин А.В. // Журн. физ. химии. 2001. Т. 75. № 12. С. 2249. [Grampp G., Ivanov A.I., Kuchin A.V. // Rus. J. of Phys. Chem. A. 2001. V. 75. № 12. P. 2062.]
  8. 8. Fayed T.A., Grampp G., Landgraf S. // Int. J. Photoenergy. 1999. V. 1. P. 173.
  9. 9. Иванов А.И., Михайлова В.А., Феськов С.В. // Журн. физ. химии. 1997. Т. 71. № 8. С. 1487. [Ivanov A.I., Mikhailova V.A., Fes’kov S.V. // Rus. J. of Phys. Chem. A. 1997. V. 71. № 8. P. 1346.]
  10. 10. Минакова Е.Н., Михайлова Е.А., Михайлова В.А. // Изв. УНЦ РАН. 2022. № 1. С. 30. https://doi.org/10.31040/2222-8349-2022-0-1-30-34
  11. 11. Ivanov A.I., Mikhailova V.A., Volodin F.V. // Chem. Phys. 1995. V. 197. P. 19. https://doi.org/10.1016/0301-0104 (95)00142-B
  12. 12. Zusman L.D. // Chem. Phys. 1980. V. 49. P. 295. https://doi.org/10.1016/0301-0104 (80)85267-0
  13. 13. Fedunov R.G., Feskov S.V., Ivanov A.I. et al. // Chem. Phys. 2004. V. 121. P. 3643. https://doi.org/10.1063/1.1772362
  14. 14. Ionkin V.N., Ivanov A.I. // Chem. Phys. 2009. V. 360. P. 137. https://doi.org/10.1016/j.chemphys.2009.04.024
  15. 15. Иванов А.И., Михайлова В.А. // Успехи химии. 2010. Т. 79. № 12. С. 1139. [Ivanov A.I., Mikhailova V.A. // Russ. Chem. Rev. 2010. V. 79. P. 1047. https://doi.org/10.1070/RC2010v079n12ABEH004167]
  16. 16. Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C. 2016. V. 29. P. 48. https://doi.org/10.1016/j.jphotochemrev.2016.11.001
  17. 17. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. B. 2016. V. 120. P. 11987. https://doi.org/10.1021/acs.jpcb.6b09363
  18. 18. Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
  19. 19. Garg A., Onuchic J.N., Ambegaokar V. // J. Chem. Phys. 1985. V. 83. P. 4491.
  20. 20. Sumi H., Marcus R.A. // J. Chem. Phys. 1986. V. 84. P. 4894. https://doi.org/10.1063/1.449978
  21. 21. Barbara P.F., Meyer T.J., Ratner M.A. // J. Phys. Chem. 1996. V. 100. P. 13148.
  22. 22. Bixon M., Jortner J. Electron Transfer: From Isolated Molecules to biomolecules. // Advances in Chemical Physics. 1999. V. 106. P. 35.
  23. 23. Barzykin A.V., Frantsuzov P.A., Seki K., Tachiya M. // Advances in Chemical Physics. 2002. V. 123. P. 511.
  24. 24. Mikhailova V.A., Malykhin R.E., Ivanov A.I. // Photochem. Photobiol. Sci. 2018. V. 17. P. 607. https://doi.org/10.1039/C7PP00464H
  25. 25. Maroncelli M., Kumar V.P., Papazyan A.A. // J. Phys. Chem. 1993. V. 97. P. 13. https://doi.org/10.1021/j100103a004
  26. 26. Horng M.L., Gardecki J.A., Papazyan A. et al. // Ibid. 1995. V. 99. P. 17311. https://doi.org/10.1021/j100048a004
  27. 27. Nazarov A.E., Fedunov R.G., Ivanov A.I. // Computer Physics Communications. 2017. V. 210. P. 172. https://doi.org/10.1016/j.cpc.2016.09.015
  28. 28. Hsieh C.C., Cheng Y.M., Hsu C.J. et al. // J. Phys. Chem. A. 2008. V. 112. P. 8323. https://doi.org/10.1021/jp804216u
  29. 29. Hsieh C.C., Jiang C.M., Chou P.T. // Acc. Chem. Res. 2010. V. 43. P. 1364. https://doi.org/10.1021/ar1000499
  30. 30. Chou P.T., Yu W.S., Cheng Y.M. et al. // J. Phys. Chem. A. 2004. V. 108. P. 6487. https://doi.org/10.1021/jp048415k
  31. 31. Chou P.T., Pu S.C., Cheng Y.M. et al. // J. Phys. Chem. A. 2005. V. 109. P. 3777. https://doi.org/10.1021/jp044205w
  32. 32. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. B. 2017. V. 121. P. 4569. https://doi.org/ 10.1021/acs.jpcb.7b02537
  33. 33. Temkin O.N. Homogeneous catalysis with metal complexes: kinetic aspects and mechanisms. John Wiley: Chichester. 2012. 830 p.
  34. 34. Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C. 2017. V. 121. P. 20629. https://doi.org/10.1021/acs.jpcc.7b06106
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library