- PII
- S0044453725020172-1
- DOI
- 10.31857/S0044453725020172
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 2
- Pages
- 309-318
- Abstract
- Diffuse reflectance infrared Fourier transform spectroscopy of adsorbed carbon monoxide is used along with X-ray absorption spectroscopy to study the effect a second alloying metal (Zn, Cu) has on the electronic state and local structure of rhodium on the surfaces of Rh/HZSM-5 zeolite catalyst. It is established that introducing copper and zinc helps improve the stability of rhodium toward aggregation (the formation of clusters) under conditions of the oxidative carbonylation of methane into acetic acid. Compared to monometallic catalyst Rh/HZSM-5, where single atom rodium sites are partially aggregated into clusters, the proportion of Rh° is halved in the case of Rh–Zn/HZSM-5, and Rh clustering does not occur in the case of Rh‒Cu/HZSM-5. The stabilizing effect of Cu is due to the interaction between copper and rhodium cations on the surface of zeolite.
- Keywords
- одноатомные родиевые катализаторы цеолит ZSM-5 легирование вторым металлом (Zn Сu) окислительное карбонилирование метана уксусная кислота
- Date of publication
- 12.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Kumar P., Al-Attas T.A., Hu J., Kibria M.G. // ACS Nano. 2022. V. 16. P. 8557. https://doi.org/10.1021/acsnano.2c02464
- 2. Shi Y.J., Zhou Y.W., Lou Y. et al. // Adv. Sci. 2022. V. 9. P. 2201520. https://doi.org/10.1002/advs.202201520
- 3. Moteki T., Tominaga N., Ogura M. // Appl. Cat. B: Env. 2022. V. 300. P. 120742. https://doi.org/10.1016/j.apcatb.2021.120742
- 4. Oda A., Horie M., Murata N. et al. // Catal. Sci. Technol. 2022. V. 12. P. 5488. https://doi.org/10.1039/d2cy01471h
- 5. Kou Z., Zang W., Wang P. et al. // Nanoscale Horiz. 2020. V. 5. P. 757. https://doi.org/10.1039/D0NH00088D
- 6. Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- 7. Ye Ch., Zhang N., Wang D., Li Y. // Chem. Commun. 2020. V. 56. P. 7687. https://doi.org/10.1039/D0CC03221B
- 8. Xiong H., Datye A.K., Wang Y. // Adv. Mater. 2021. V. 33. P. 2004319. https://doi.org/10.1002/adma.202004319
- 9. Alvarez-Galvan C., Melian M., Ruiz-Matas L. et al. // Front. Chem. 2019. V. 7. P. 104. https://doi.org/10.3389/fchem.2019.00104
- 10. Hou Y., Nagamatsu Sh., Asakura K. et al. // Commun. Chem. 2018. V. 1. P. 41. https://doi.org/10.1038/s42004-018-0044-9
- 11. Prieto G., Zečevic J., Friedrich H. et al. // Nat. Mater. 2013. V. 12. P. 34. https://doi.org/10.1038/nmat3471
- 12. Feng S., Song X., Ren Zh., Ding Y. // Ind. Eng. Chem. Res. 2019. V. 58. P. 4755. https://doi.org/10.1021/acs.iecr.8b05402
- 13. Batova T.I., Stashenko A.N., Obukhova T.K. et al. // Micropor. Mesopor. Mater. 2023. V. 366. P. 112953. https://doi.org/10.1016/j.micromeso.2023.112953
- 14. Pappas D.K., Borfecchia E., Dyballa M. et al. // Chem. Cat. Chem. 2019. V. 11. P. 621. https://doi.org/10.1002/cctc.201801542
- 15. Zhang P., Yang X., Hou X. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6297. https://doi.org/10.1039/C9CY01749F
- 16. Mahyuddin M.H., Tanaka S., Shiota Y., Yoshizawa K. // Bull. Chem. Soc. Jpn. 2020. V. 93. P. 345. https://doi.org/10.1246/bcsj.20190282
- 17. Wang S., Guo Sh., Luo Y. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6613. https://doi.org/10.1039/C9CY01803D
- 18. Matsubara H., Tsuji E., Moriwaki Y. et al. // Catal. Lett. 2019. V. 149. P. 2627. https://doi.org/10.1007/s10562-019-02855-y
- 19. Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. T. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- 20. Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
- 21. Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- 22. Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // Catal. 2005. V. 236. P. 168. https://doi.org/10.1016/j.jcat.2005.09.017
- 23. Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
- 24. Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- 25. Davydov A. Edited by Sheppard N. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. P. 668. https://doi.org/10.1016/s1351-4180 (03)01049-3
- 26. Hadjiivanov K.I., Vayssilov G.N. // Adv. Catal. 2002. V. 47. P. 307. http://dx.doi.org/10.1016/0920-5861 (95)00163-8
- 27. Asokan C., Thang H., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- 28. Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- 29. Шилина М.И., Обухова Т.К., Батова Т.И., Колесниченко Н.В. // Журн. физ. химии. 2023. Т. 97. № 7. С. 944. https://doi.org/10.31857/S0044453723070269 [Shilina M.I., Obukhova T.K., Batova T.I., Kolesnichenko N.V. // Russ. J. Phys. Chem. A. 2023. V. 97. № 7. P. 1387. https://doi.org/10.1134/S0036024423070269]
- 30. Субботин А.Н., Жидомиров Г.М., Субботина И.Р., Казанский В.Б. // Кинетика и катализ. 2013. Т. 54. № 6. С. 786. https://doi.org/10.7868/S0453881113060130 [Subbotin A.N., Zhidomirov G.M., Subbotina I.R., Kazansky V.B. // Kinet. Catal. 2013. V. 54. № 6. Р. 744. https://doi.org/10.1134/s002315841306013x]
- 31. Palomino G.T., Fisicaro P., Bordiga S. et al. // J. Phys. Chem. B. 2000. V. 104. P. 4064. https://doi.org/10.1021/jp993893u
- 32. Ikuno T., Grundner S., Jentys A. et al. // J. Phys. Chem. C. 2019. V. 123. P. 8759. https://doi.org/10.1021/acs.jpcc.8b10293
- 33. Sushkevich V.L., van Bokhoven J.A. // Chem. Commun. 2018. V. 54. P. 7447. https://doi.org/10.1039/c8cc03921f
- 34. Lamberti C., Groppo E., Spoto G. et al. // Adv. Catal. 2007. V. 51. P. 1. https://doi.org/10.1016/S0360-0564 (06)51001-6
- 35. Ivanin I.A., Udalova O.V., Kaplin I.Yu., Shilina M.I. // Applied Surface Science. 2024. V. 655. P. 159577. https://doi.org/10.1016/j.apsusc.2024.159577
- 36. Skinner W.M., Prestidge C.A., Smart R.St.C. // Surf. Interf. Anal. 1996. V. 24. P. 620. https://doi.org/10.1002/ (SICI)1096-9918(19960916)24:93.0.CO;2-Y
- 37. Carrasco E., Oujja M., Sanz M. et al. // Microchem J. 2018. V. 137. P. 381. https://doi.org/10.1016/j.microc.2017.11.014