RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Photocatalytic oxidation of oxalic acid by oxygen and ozone in aqueous solution

PII
S0044453725020228-1
DOI
10.31857/S0044453725020228
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 2
Pages
351-360
Abstract
Experimental study of mineralization of oxalic acid Н2С2О4 and some other oxidation-resistant organic compounds in an aqueous solution under the action of oxygen, ozone, and ultraviolet radiation is performed. It is found that in acidic solutions Н2С2О4 is not oxidized under the action of ozone or UV-irradiation in the presence of oxygen; under simultaneous action of O3 + UV, oxidation with low rate is observed. The possibility of photocatalysis of mineralization process by ions Mn2+, MnO4–, Fe3+, Со2+, BrO3–, or IO3– is studied. Fe3+ ions are the most effective photocatalyst as there is a rather fast oxidation of oxalic acid to CO2 in their presence and under UV-irradiation both under the action of O3 and O2. The conditions of maximum ozone conversion at oxalic acid photomineralization are found. The possibility of oxidative destruction of more oxidation-resistant substrate - acetic acid - at ozonation and UV-irradiation of solutions with Fe(III) and Н2С2О4 additives is shown.
Keywords
щавелевая кислота озон УФ-облучение фотокатализ минерализация
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Baird C., Cann M. Environmental Chemistry. 5 ed. New York: W.H. Freeman & Co., 2012.
  2. 2. Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems. Boca Raton (Florida, USA): Lewis Publishers, CRC Press LLC, 2004.
  3. 3. Lim S., Shi J.L., Von Gunten U., Mccurry D.L. // Water Res. 2022. V. 213. P. 118053.
  4. 4. Marcì G., García-López E., Palmisano L. // J. Appl. Electrochem. 2008. V. 38. № 7. P. 1029.
  5. 5. Bangun J., Adesina A.A. // Applied Catalysis A: General. 1998. V. 175. № 1. P. 221.
  6. 6. Michael K.M., Rizvi G.H., Mathur J.N., Ramanujam A. // J. Radioanalyt. Nucl. Chem. 2000. V. 246. № 2. P. 355.
  7. 7. Ganesh S., Desigan N., Chinnusamy A., Pandey N.K. // Ibid. 2021. V. 328. № 3. P. 857.
  8. 8. Ананьев А.В., Тананаев И.Г., Шилов В.П. // Успехи химии. 2005. Т. 74. № 11. С. 1132. [Ananiev A.V., Tananaev I.G., Shilov V.P. // Russ. Chem. Rev. 2005. V. 74. № 11. P. 1039.]
  9. 9. Von Sonntag C., Von Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications. London: IWA Publishing, 2012.
  10. 10. Hoigné J., Bader H. // Water Res. 1983. V. 17. № 2. P. 185.
  11. 11. Kuhn H.J., Braslavsky S.E., Schmidt R. // Pure Appl. Chem. 2004. V. 76. № 12. P. 2105.
  12. 12. Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1953. V. 220. № 1140. P. 104.
  13. 13. Hatchard C.G., Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1956. V. 235. № 1203. P. 518.
  14. 14. Rabani J., Mamane H., Pousty D., Bolton J.R. // Photochem. Photobiol. 2021. V. 97. № 5. P. 873–902.
  15. 15. Goldstein S., Rabani J. // J. Photochem. Photobiol. A. 2008. V. 193. № 1. P. 50.
  16. 16. Леванов А.В., Исайкина О.Я., Грязнов Р.А. // Кинетика и катализ. 2022. Т. 63. № 2. С. 203. [Levanov A.V., Isaikina O.Y., Gryaznov R.A. // Kinetics and Catalysis. 2022. V. 63. № 2. P. 180.]
  17. 17. Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427.]
  18. 18. Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Журн. аналит. химии. 2003. Т. 58. № 5. С. 496. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // J. Anal. Chem. 2003. V. 58. № 5. P. 439.]
  19. 19. Леванов А.В., Исайкина О.Я., Харланов А.Н. // Журн. физ. химии. 2020. Т. 94. № 11. С. 1616. [Levanov A.V., Isaikina O.Y., Kharlanov A.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 11. P. 2219.]
  20. 20. Mao S., Chen Z., An X., Shen W. // J. Phys. Chem. A. 2011. V. 115. № 22. P. 5560.
  21. 21. Wayne R.P. // Atmospheric Environment. 1987. V. 21. № 8. P. 1683.
  22. 22. Bauer D., D’ottone L., Hynes A.J. // Phys. Chem. Chem. Phys. 2000. V. 2. № 7. P. 1421.
  23. 23. Smith G.D., Molina L.T., Molina M.J. // J. Phys. Chem. A. 2000. V. 104. № 39. P. 8916.
  24. 24. Taniguchi N., Takahashi K., Matsumi Y. // Ibid. 2000. V. 104. № 39. P. 8936.
  25. 25. Wilkinson F., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1995. V. 24. № 2. P. 663.
  26. 26. Biedenkapp D., Hartshorn L.G., Bair E.J. // Chem. Phys. Lett. 1970. V. 5. № 6. P. 379.
  27. 27. Reisz E., Schmidt W., Schuchmann H.P., Von Sonntag C. // Env. Sci. Tech. 2003. V. 37. № 9. P. 1941.
  28. 28. Sehested K., Getoff N., Schwoerer F. et al. // J. Phys. Chem. 1971. V. 75. № 6. P. 749.
  29. 29. Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Изв. Академии наук. Сер. химическая. 2008. № 6. С. 1165. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // Russ. Chem. Bull. 2008. V. 57. № 6. P. 1187.]
  30. 30. Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Химия высоких энергий. 2008. Т. 42. № 1. С. 5. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // High Energy Chem. 2008. V. 42. № 1. P. 1.]
  31. 31. Zuo Y., Hoigne J. // Env. Sci. Tech. 1992. V. 26. № 5. P. 1014.
  32. 32. Zuo Y., Hoigné J. // Atmospheric Environment. 1994. V. 28. № 7. P. 1231.
  33. 33. Martell A.E., Smith R.M. Critical Stability Constants. V. 5. First Supplement. New York: Plenum Press, 1982.
  34. 34. Pilz F.H., Lindner J., Vöhringer P. // Phys. Chem. Chem. Phys. 2019. V. 21. № 43. P. 23803.
  35. 35. Pozdnyakov I.P., Kel O.V., Plyusnin V.F. et al. // J. Phys. Chem. A. 2008. V. 112. № 36. P. 8316.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library