RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Intermolecular binding of С...H−Cl in complexes of methane, ethane, and propane with a chlorine hydride molecule

PII
S0044453725030054-1
DOI
10.31857/S0044453725030054
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
408-419
Abstract
Quantum-chemical calculations of binary complexes with the intermolecular bond С...H−Cl formed by methane, ethane, and propane molecules with a chlorine hydride molecule were carried out by the MP2/aug-cc-pVTZ method. It is shown that the bonding of hydrocarbon with an HCl molecule is possible at different mutual orientation of monomers; at that, the properties of the formed complexes are similar to the properties of molecular systems with a typical hydrogen (H-) bond. Upon complexation, elongation of the covalent bond H−Cl is observed with a frequency shift of the respective IR band of the valence vibration to the long-wave region, as well as a chemical shift on the bridging hydrogen atom characteristic of H-bonded complexes. Analysis of the nature of intermolecular bonding included decomposition of the binding energy into components, as well as NBO analysis and study of the electron density topology by the AIM method of the Bader theory. Potential curves of intermolecular interaction and electron density shift maps when the complex is formed out of monomers are were plotted.
Keywords
водородная связь атом углерода как акцептор протона электростатическое и межорбитальное взаимодействия критическая точка межмолекулярной связи взаимопроникновение атомов
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Gilli G., Gilli P. The nature of the hydrogen bond. Oxford: University Press. U.K. 2009.
  2. 2. Hydrogen Bonding – New Insights / ed. S.J. Grabowski. New York: Springer, 2006.
  3. 3. Pauling L. The Nature of the Chemical Bond, third ed. New York: Cornell University Press, Ithaca, 1960.
  4. 4. Parthasarathi R., Subramanian V., Sathyamurthy N. // J. Phys. Chem. A. 2006. V. 110. P. 3349.
  5. 5. Grabowski S.J., Sokalski W.A., Dyguda E., Leszczynski J. // J. Phys. Chem. B. 2006. V. 110. P. 6444.
  6. 6. Kollman P.A., Allen L.C. // Chem. Rev. 1972. V. 72. P. 283.
  7. 7. Hobza P., Havlas Z. // Ibid. 2000. V. 100. P. 4253.
  8. 8. Steiner T., Koellner G. // J. Mol. Biol. 2001. V. 305. P. 535.
  9. 9. de Oliveira D.G. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 37.
  10. 10. Saggu M., Levinson N.M., Boxer S.G. // J. Am. Chem. Soc. 2012. V. 134. P. 18986.
  11. 11. Nishio M. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 13873.
  12. 12. Grabowski S.J., Sokalski W.A., Leszczynski J. // Chem. Phys. Lett. 2006. V. 432. P. 33.
  13. 13. Grabowski S.J. // J. Phys. Chem. A. 2007. V. 111. P. 3387.
  14. 14. Desiraju G.R., Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford, 1999.
  15. 15. Nishio M. Encyclopedia of Supramolecular Chemistry / Eds. J.L. Atwood., J.W. Steed. New York: Marcel Dekker Inc., 2004.
  16. 16. Arunan E., Desiraju G.R., Klein R.A. et al. // Pure Appl. Chem. 2011. V. 83. P. 1637.
  17. 17. Novoa J.J., Tarron B. // J. Chem. Phys. 1991. V. 95. P. 5179.
  18. 18. Gu Y., Kar T., Scheiner S. // J. Am. Chem. Soc. 1999. V. 121. P. 9411.
  19. 19. Cubero E., Orozco M., Hobza P., Luque F.J. // J. Phys. Chem. A. 1999. V. 103. P. 6394.
  20. 20. Hartman M., Wetmore S.D., Radom L. // Ibid. 2001. V. 105. P. 4470.
  21. 21. Davis S.R., Andrews L. // J. Chem. Phys. 1987. V. 86. P. 3765.
  22. 22. Legon A.C., Roberts B.P., Wallwork A.I. // Chem. Phys. Lett. 1990. V. 173. P. 107.
  23. 23. Craw J.S., Bone R.G.A., Bacskay G.B. // J. Chem. Soc. Faraday Trans. 1993. V. 89. P. 2363.
  24. 24. Dore L., Cohen R.C., Schmuttenmaer C.A., et al. // J. Chem. Phys. 1994. V. 100. P. 863.
  25. 25. Suenram R.D., Fraser G.T., Lovas F.J., Kawashima Y. // J. Chem. Phys. 1994. V. 101. P. 7230.
  26. 26. Szczęśniak M.M., Chałasiński G., Cybulski S.M., Cieplak P. // J. Chem. Phys. 1993. V. 98. P. 3078.
  27. 27. Cao Z., Tester J.W., Trout B.L. // J. Chem. Phys. 2001. V. 115. P. 2550.
  28. 28. Akin-Ojo O., Szalewicz K. // J. Chem. Phys. 2005. V. 123. 134311.
  29. 29. Martins J.B.L., Politi J.R.S., Garcia E., et al. // J. Phys. Chem. A. 2009. V. 113. P. 14818.
  30. 30. Qu C., Conte R., Houston P.L., Bowman J.M. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 8172.
  31. 31. Mukhopadhyay A. // Comput. Theor. Chem. 2016. V. 1083. P. 19.
  32. 32. Ambrosetti A., Costanzo F., Silvestrelli P.L. // J. Phys. Chem. C2011. V. 115. P. 12121.
  33. 33. Parajuli R., Arunan E. // J. Chem. Sci. 2015. V. 127. P. 1035.
  34. 34. Chandra A.K., Nguyen M.T. // J. Phys. Chem. A. 1998. V. 102. P. 6865.
  35. 35. Raghavendra B., Arunan E. // Chem. Phys. Lett. 2008. V. 467. P. 37.
  36. 36. Koch U., Popelier P.L.A. // J. Phys. Chem. 1995. V. 99. P. 9747.
  37. 37. Popelier P. Atoms in Molecules: An Introduction. Harlow: Pearson Education. 2000.
  38. 38. Isaev A.N. // Comput. Theor. Chem. 2016. V. 1090. P. 180.
  39. 39. Kendall R.A., Dunning T.H. Jr., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796.
  40. 40. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
  41. 41. Moller C., Plesset M.S. // Phys. Rev. 1934. V. 46. P. 618.
  42. 42. Lu T., Chen F. // J. Comp. Chem. 2012. V. 33. P. 580.
  43. 43. Frisch M.J., Pople J.A., Binkley J.S. // J. Chem. Phys. 1984. V. 80. P. 3265.
  44. 44. Reed A.E., Weinhold F., Curtiss L.A., Pochatko D.J. // Ibid.1986. V. 84. P. 5687.
  45. 45. Ditchfield R. // Mol. Phys. 1974. V. 27. P. 789.
  46. 46. Wolinski K., Hilton J.F., Pulay P. // J. Am. Chem. Soc. 1990. V. 112. P. 8251.
  47. 47. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  48. 48. Bader R.F.W. Atoms in molecules, a quantum theory. Oxford: Clarendon Press, 1993.
  49. 49. Morokuma K., Kitaura K. // Molecular Interactions. New York: Wiley, 1980. P. 21.
  50. 50. Schmidt M.W., Baldridge K.K., Boatz J.A., et al. // J. Comput. Chem. 1993. V. 14. P. 1347.
  51. 51. Gordon M.S., Schmidt M.W. Theory and Applications of Computational Chemistry: the First Forty Years / Eds. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria. Asterdam: Elsevier, 2005. P. 1167.
  52. 52. Lee E.P.F., Wright T.G. // J. Chem. Soc. Faraday Trans. 1998. V. 94. P. 33.
  53. 53. Isaev A.N. // Comput. Theor. Chem. 2018. V. 1142. P. 28.
  54. 54. Baron M., Giorgi-Renault S., Renault J., et al. // Can. J. Chem. 1984. V. 62. P. 526.
  55. 55. Isaev A.N. // Russ. J. Phys. Chem. A 2016. V. 90. P. 1978.
  56. 56. Gu Ya., Kar T., Scheiner S. // J. Amer. Chem. Soc. 1999. V. 121. P. 9411.
  57. 57. Popelier P.L.A. // J. Phys. Chem. A. 1998. V. 102. P. 1873.
  58. 58. Mó O., Yánez M., Elguero J. // J. Mol. Struct. (Theochem). 1994. V. 314. P. 73.
  59. 59. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library