RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Modeling of crystallization processes of aviation fuel with different content of aromatic hydrocarbons

PII
S0044453725030069-1
DOI
10.31857/S0044453725030069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
420-427
Abstract
The influence of additives of some organic substances on the crystallization onset temperatures of kerosene fractions (KF) obtained from crude oil (straight-run or SRKF) and in the process of catalytic cracking of heavy oil residues (HKF) is studied by the method of thermodynamic modeling. Normal paraffins CnH2n+2 (n = 9, 11, 16) are used as additives to the KFs, and m-ethylbutylbenzene is used as an aromatic hydrocarbon. It is shown that using the UNIFAC and UNIQUAC models, one can reproduce the experimental data presented in publications and indicating that the addition of normal paraffins to HKF noticeably increases the freezing point when n is 11 and greater. For SRKF, a similar increase occurs starting from n = 16. According to the calculation results, the addition of m-ethylbutylbenzene practically does not affect the crystallization onset temperature.
Keywords
температура замерзания авиационный керосин парафины м-этилбутилбензол термодинамическое моделирование UNIFAC UNIQUAC
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Kittel H., Straka P., Šimaček P., Kadleček D. // Petroleum Science and Technology. 2022. v. 41 (5). P. 507. DOI: 10.1080/10916466.2022.2061000
  2. 2. Zabarnick S., Widmor N. // Energy & Fuels. 2001. V. 15. P. 1447. DOI 10.1021/ef010074b
  3. 3. Coutinho J.A.P., Andersen S.I., Stenby E.H. // Fluid Ph. Eq. 1995. v. 103 p. 23. DOI 10.1016/0378-3812(94)02600-6
  4. 4. Coutinho J.A.P. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4870. DOI 10.1021/ie980340h
  5. 5. Coutinho J.A.P., Dauphin C., Daridon J.L. // Fuel. 2000. v. 79. p. 607. DOI 10.1016/S0016-2361(99)00188-X
  6. 6. Coutinho J.A.P. // Energy & Fuels. 2000. v. 14. p. 625. DOI 10.1021/ef990203c
  7. 7. Улитько А.В., Волгин С.Н., Ощенко А.П., Соловьев А.В. // Тр. 25 Гос. НИИ МО РФ. 2022. Вып. 60. Т. 75–80 / Под ред. В.А. Маркина. 512 c.
  8. 8. Weidlicht U., Gmehling J. // Ind. Eng. Chem. Res. 1987. v. 26. p. 1372. DOI 10.1021/ie00067a018
  9. 9. Gmehling J., Li J., Schiller M. // Ind. Eng. Chem. Res. 1993. v. 32. p. 178. DOI 10.1021/ie00013a024
  10. 10. G’mehling J., Lohmann J., Jakob A., et al. // Ind. Eng. Chem. Res. 1998. v. 37. p. 4876. DOI 10.1021/ie980347z
  11. 11. Morgan D.L., Kobayashi R. // Fluid Ph. Eq. 1994. v. 94. p. 51. DOI 10.1016/0378-3812(94)87051-9
  12. 12. Болотник Т.А. Новые подходы к определению ракетных керосинов в объектах окружающей среды и растениях методом газовой хромато-масс-спектрометрии. Дис. … к. х. н., МГУ им. М.В. Ломоносова, Химический ф-т, М., 2017. 160 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library