RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Comparative analysis of chromatograph mass spectrometric ways of detecting impurities in a concentrated hydrogen peroxide–rocket fuel oxidizer

PII
S0044453725030099-1
DOI
10.31857/S0044453725030099
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
442-449
Abstract
In rocket launchers, where operational safety and high reliability are key factors, environmentally friendly propellants, in particular, hydrogen peroxide solutions, are widely used as fuel. The authors study the composition of highly concentrated hydrogen peroxide as an oxidizer for liquid rocket fuels. Different areas of using chromatograph mass spectrometry in the aerospace industry are considered. A comparative analysis is performed for ways of detecting and measuring impurities in highly concentrated hydrogen peroxide by means of chromatograph mass spectrometry.
Keywords
пероксид водорода ракетное топливо высококонцентрированный пероксид хромато-масс-спектрометрия
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
9

References

  1. 1. Schneider S., Hawkins T., Ahmed Y., et al. // Angew. Chem. 2011. V. 50. P. 5886.
  2. 2. Dankanich. J., Liou L, Alexander L. L. // AERO. 2010. P. 5446769.
  3. 3. Edwards T. // J. Propul. Power. 2003. V. 19. P. 1089.
  4. 4. De Iaco Veris A. // Fundamental Concepts of Liquid-Propellant Rocket Engines. Springer. Cham. 2021. P. 1.
  5. 5. Remissa I., Jabri H., Hairch Y., et al. // Eurasian Chem.-Technol. J. 2023. V. 25. P. 3.
  6. 6. Nosseir A. E.S., Cervone A., Pasini A. // Aerospace. 2021. V. 8. № 1. P. 20.
  7. 7. Bhosale V. K., Jeong J., Kwon S., et al. // Combustion and Flame. 2020. V. 214. P. 426.
  8. 8. Rarata G., Florczuk W., Smetek J. // J. of Aerospace Science and Technology. 2016. V. 1. Р. 42.
  9. 9. Gramatyka J., Paszkiewicz P., Grabowski D., et al. // Aerospace. 2022. V. 9. Р. 297.
  10. 10. Whitmore S. A., Armstrong I. W., Heiner M. C., et al. // Aeronautics and Aerospace Open Access J. 2018. V. 2. № 6. Р. 334.
  11. 11. Kopacz W., Okninski A., Kasztankiewicz A., et al. // FirePhysChem. 2022. V. 2. № 1. P. 56.
  12. 12. Rhodes B. L., Ronney P. D. // J. of Propulsion and Power. 2019. V. 35. № 3. P. 595.
  13. 13. Emerce N. B., Kokal U., Yıldız U. C., et al. //Applied Catalysis A: General. 2024. V. 670. Р. 119516.
  14. 14. Yang Y., Ye Y., Shen R. // Catalysts. 2024. V. 14. Р. 39.
  15. 15. Kang S. // Acta Astronaut. 2023. V. 205. Р. 47.
  16. 16. Shahrin M. S.N., Othman N., Nik Mohd N. A.R., et al. // CFD Letters. 2021. V. 13. № 12. Р. 1.
  17. 17. Whitmore S. A., Martinez C. J., Merkley D. P. // Aeronautics and Aerospace Open Access Journal. 2018. V. 2. № 6. Р. 356.
  18. 18. Harikumar P. S., Litty Josephand Dhanya A. // J. of Environmental Engineering & Ecological Science. 2013. P. 1.
  19. 19. Trushlyakov V. I., Urbansky V. A., Yudintsev V. V. // J. of Spacecraft and Rockets. 2021. Vol. 58. № 3. Р. 685.
  20. 20. Nimmerfroh N., Walzer E., Brossmer C. // Eur. Space Agency. 2001. V. 484. P. 77.
  21. 21. Buryak A. K., Serdyuk T. M. // Russ. Chem. Rev. 2013. V. 82. № 4. P. 369.
  22. 22. Schneider S., Hawkins T., Ahmed Y., et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 5886.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library