RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Molecular dynamics and experimental study of structural behavior of alcohol dehydrogenase enzyme on graphitic sorbent surfaces: orientational features of titratable amino acid residues

PII
S0044453725030147-1
DOI
10.31857/S0044453725030147
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 3
Pages
484-498
Abstract
The identification of the characteristic structural conformations of enzymes and proteins, especially key titratable amino acids, may become a necessary stage of further research in the implementation of natural and computational experiments, which are carried out by varying the pH values, charges and concentrations of the water-salt environment. In this work, computer molecular dynamics (MD) and experimental studies of the enzyme alcohol dehydrogenase and its cofactor (ADH+NAD) solvated with water on a graphite carbon surface are carried out. The snapshots of the adsorption process of ADH+NAD on the surface of a graphitic carbon surface during long-term 100 nanosecond dynamical conformational and rotational changes are obtained. The MD-analysis provides mapping of the ADH+NAD enzyme orientation adsorption, thereby allowing for the detailed observation of changes in protein conformation in the region of titratable amino acid residues of ADH. Next, based on an extension of the MD-model implementation, the mechanism of conformational changes in the entire system (ADH+NAD + water / graphitic carbon surface), as well as the orientation adsorption of the entire protein system along with key titratable amino acids are considered and the MD simulation data are compared with the experimental observations.
Keywords
конформация белков водный раствор графитовая углеродная поверхность фермент алкогольдегидрогеназа молекулярная динамика экспериментальные наблюдения процессы адсорбции
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
6

References

  1. 1. Foresman J., Frish E. Exploring chemistry. Gaussian Inc., Pittsburg, USA. 1996. V. 21.
  2. 2. Leach A.R. Molecular Modelling: Principles and Applications. Pearson education, 2001.
  3. 3. Case D.A., Cheatham, T. E. III, Darden T., Gohlke H., et al. // J. of Computational Chemistry. 2005. V. 26. № 16. P. 1668.
  4. 4. Kholmurodov Kh.T. Models in Bioscience and Materials Research: Molecular Dynamics and Related Techniques. 2013. P. 1. ISBN: 978-1-62808-052-0.
  5. 5. Kholmurodov Kh. T. // Computational Materials and Biological Sciences. 2015. С. 1. ISBN: 978-1-63482-541-2.
  6. 6. Ye H., Huang L., Li W., Zhang Y., et al. // RSC Advances. 2017. V. 7. № 35. P. 21398. DOI: https://doi.org/10.1039/c7ra03206d
  7. 7. Höhn S., Zheng K., Romeis S., Brehl M., et al. // Advanced Materials Interfaces. 2020. V. 7. № 15. P. 2000420. DOI https://doi.org/10.1002/admi.202000420
  8. 8. Benavidez T.E., Torrente D., Marucho M., Garcia C.D. // J. of Colloid and Interface Science. 2014. V. 435. P. 164. ISSN0021-9797, DOI: https://doi.org/10.1016/j.jcis.2014.08.012.
  9. 9. Wang F., Zhang Y.Q. // Advances in Protein Chemistry and Structural Biology. 2015. V. 98. P. 263. DOI: https://doi.org/10.1016/bs.apcsb.2014.11.005
  10. 10. Welborn V.V. // Chem Catalysis. 2022. V. 2. № 1. P. 19. DOI: https://doi.org/10.1021/acs.chemrev.8b0039
  11. 11. Norde W., Lyklema J. // J. of Biomaterials Science, Polymer Edition. 1991. V. 2. № 3. P. 183. DOI: https://doi.org/10.1080/09205063.1991.9756659
  12. 12. Andrade J.D. (ed.). Surface and Interfacial Aspects of Biomedical Polymers: V. 1. Surface Chemistry and Physics. Springer Science & Business Media, 2012. DOI: https://doi.org/10.1007/978-1-4684-8610-0
  13. 13. Gladyshev P.P., Shapovalov Yu.A., Kvasova V.P. Reconstructed Oxidoreductase Systems. NAUKA (The science). KazSSR, 1987.
  14. 14. Gladyshev P.P., Goryaev M.I., Shpilberg I.G., Shapovalov Yu.A. / /Molecular Biology. 1982. V. 16. № 5. P. 938.
  15. 15. Gladyshev P.P., Goryaev M.I., Shpilberg I.G. // Molecular Biology. 1982. V. 16. № 5. P. 943.
  16. 16. Case D.A., Aktulga H.M., Belfon K., Cerutti D.S., et al. // J. of Chemical Information and Modeling. 2023. V. 63. № 20. P. 6183. DOI: https://doi.org/10.1021/acs.jcim.3c01153
  17. 17. Lee T.S., Mermelstein D., Lin C., LeGrand S., et al. // Ibid. 2018. V. 58. № 10. P. 2043. DOI: https://doi.org/10.1021/acs.jcim.8b00462
  18. 18. Cruzeiro V.W.D., Amaral M.S., Roitberg A.E. // The J. of Chemical Physics. 2018. V. 149. № 7. DOI: https://doi.org/10.1063/1.5027379
  19. 19. Kavanagh K.L., Shafqat N., Yue W., von Delft F., et al. // Structural Genomics Consortium (SGC). DOI: https://doi.org/10.2210/pdb3COS/pdb (PDB ID: 3COS) (to be published).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library