RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

INFLUENCE OF THE INDUCTIVE EFFECT ON THE PROTOLYTIC PROPERTIES OF SOME ALIPHATIC AMINO ACIDS

PII
S0044453725050078-1
DOI
10.31857/S0044453725050078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 5
Pages
732-739
Abstract
The protolytic properties of a number of aliphatic amino acids, viz. serine (Ser), cysteine (Cys), glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), and isoleucine (Ile) in aqueous solutions at T = 298.2 K and I = 0.1 mol/L NaNO are studied by pH monitoring. Using the calculated ionization constants of amino acids and the equation allowing one to quantify the inductive effect in the aliphatic series (the Taft equation), the substituent constant σ* is calculated, with its values showing a positive correlation with the ionization constants of amino acids (pK) (R = 0.9561 and R = 0.8542). The results show that the acidity of the studied amino acids decreases as follows Cys > Ser > Gly > Leu > Ala > Ile > Val. The acid-base properties of amino acids are found to change depending on the inductive effect (the radical constant σ*). Among the studied amino acids, Cys exhibits the highest acidity and is considered to be the weakest base.
Keywords
pH-метр алифатические аминокислоты константа ионизации влияние индуктивного эффекта уравнение Тафта
Date of publication
05.11.2024
Year of publication
2024
Number of purchasers
0
Views
8

References

  1. 1. Akram M., Asif H.M., Uzair M., et al. // J. of Medicinal Plants Research. 2011. V. 5. № 17. P. 3997.
  2. 2. Valdemir L., Zélia M. da Costa L., Danillo V., et al. // J. of Molecular Liquids. 2020. P. 319. https://doi.org/10.1016/j.molliq.2020.114109
  3. 3. Rand R.P. // Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2004. V. 359. P. 1277. https://doi.org/10.1098/rstb.2004.1504
  4. 4. Adam C.L., Gordon M.C. // J. Chem. Inf. Model. 2009. V. 49. P. 2013.
  5. 5. Makowska J., Baginska K., Liwo A., et al. // Peptide Science. 2008. V. 90. № 5. https://doi.org/10.1002/bip.21046
  6. 6. Somaryn M.S., Gharib F. // J. of Applied Chemical Research. 2014. V. 8. № 3. P. 17.
  7. 7. Subirats X.E., Rosés F.M., Bosch E., et al. // Molecular Sciences and Chemical Engineering, Elsevier 2015. https://doi.org/10.1016/B978-0-12-409547-2.11559-8
  8. 8. Зеленин О.Ю., Кочергина Л.А. // Журн. общ. химии. 2004. Т. 74. № 2. С. 230–234.
  9. 9. Bretti C., Giuffrè O., Lando G., et al. // SpringerPlus. 2016. 5:928. https://doi.org/10.1186/s40064-016-2568-8
  10. 10. Seza Bastug A., Seda Goz E., Talman Y., et al. // J. of Coordination Chemistry. 2011. V. 64. № 2. P. 281. http://dx.doi.org/10.1080/00958972.2010.541454
  11. 11. Clarke R.G.F., Collins C.M., Roberts J.C., et al. // Geochimicaet Cosmochimica Acta. 2004. V. 69. № 12. P. 3029. https://doi.org/10.1016/j.gca.2004.11.028
  12. 12. Вандышев В.Н., Леденков С.Ф. // Журн. физ. химии. 2009. Т. 83. № 12. С. 2384.
  13. 13. Chernyshova О.S., Boichenko A.P., Abdulrahman H., et al. // J. of Molecular Liquids. 2013. Р. 182. http://dx.doi.org/10.1016/j.molliq.2013.03.003
  14. 14. Sharma V.K., Casteran F., Millero F.J., et al. // J. of Solution Chemistry. 2002. V. 31. № 10. P. 783. https://doi.org/10.1023/a:1021389125799
  15. 15. Zhu M., Yang D., Ye R., et al. // Catal. Sci. Technol. 2019. https://doi.org/10.1039/C9CY00102F.
  16. 16. Chowdhury S., Mandal P., Hossain A., et al. // J. Chem. Eng. Data. 2019. V. 64. № 10. P. 4286. https://doi.org/10.1021/acs.jced.9b00363
  17. 17. Glinskia J., Chavepeyerb G., Platten J. // Biophysical Chemistry 2000. V. 84. P. 99. https://doi.org/10.1016/S0301-4622 (99)00150-7
  18. 18. Горичев И.Г., Атанасян Т.К., Мирзоян П.И. Расчет констант кислотно-основных свойств наночастиц оксидных суспензий с помощью программ Mathсad. Учебное пособие. Москва. 2014. 57 с.
  19. 19. Arcis H., Ferguson J.P., Cox J.S., et al. // Cite as: J. Phys. Chem. Ref. 2020. V. 49. https://doi.org/10.1063/1.5127662
  20. 20. Кобилова Н.Х., Бобилова Ч.Х., Жабборова Д.Р. // Международный академический вестник. 2019. № 1 (33). С. 89.
  21. 21. Самадов А.С., Хакимов Дж.Н., Степнова А.Ф. // Журн. физ. химии. 2023. Т. 97. № 4. С. 512. https://doi.org/10.31857/S004445372304026X
  22. 22. Самадов А.С., Миронов И.В.,. Горичев И.Г. и др. // Журн. общ. химии. 2020. Т. 90. № 11. С. 1738. DOI: 10.31857/S0044460X20110141
  23. 23. Самадов А.С., Степнова А.Ф., Файзуллозода Э.Ф. и др. // Вecтн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 3.
  24. 24. Kochergina L.A., Volkov A.V., Khokhlova E.A., et al. // Rus. J. of Physical Chemistry. 2011. V. 85. № 5. P. 970.
  25. 25. Martell A.E., Smith R.M. Aminocarboxylic Acids. Critical Stability Constants. 1982. P. 1. https://doi.org/10.1007/978-1-4615-6761-5_1
  26. 26. Zelenin O. Yu., Kochergina L.A. // Russian Journal of general chemistry. 2004. V. 74. № 2. P. 259
  27. 27. Sovago I., Kiss T., Gergely A. // Pure & App. Chem. 1993. V. 65. № 5. P. 1029. https://doi.org/10.1351/pac199365051029.
  28. 28. Berthon G. // Pure & App. Chem. 1995. V. 67. № 7. P. 1117. https://doi.org/10.1351/pac199567071117
  29. 29. Popoca J.L., Thoke H.S., Stock R.P., et al. // Biochemistry and Biophysics Reports. 2020. V. 24. № 100802. https://doi.org/10.1016/j.bbrep.2020.100802
  30. 30. Cherkasov A.R., Galkin V.I., Cherkasov R.A. // Rus. Chemical Reviews. 1996. V. 65. № 8. P. 641. https://doi.org/10.1070/RC1996v065n08ABEH000227
  31. 31. Kingsbury C.A. // Faculty Publications Chemistry Department. 2019. № 155. http://digitalcommons.unl.edu/chemfacpub/155
  32. 32. Widing H.F., Levitt L.S. // Z. Naturforsch. 1979. V. 34b. P. 321. https://doi.org/10.1515/znb1979-0236.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library