RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

THEORETICAL STUDY OF THE REACTION AMBER ANHYDRIDE WITH BENZOCAINE

PII
S0044453725060049-1
DOI
10.31857/S0044453725060049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
853-865
Abstract
Possible reaction pathways of aminolysis of succinic anhydride by benzocaine — concerted and two-step — have been investigated by the density functional theory method (level ωB97M—V/ma-def2-QZVPP//r2SCAN-3c). For each mechanism three variants are considered: without catalysis, self-catalysis by the reagent molecule (benzocaine) and autocatalysis by the product (succinamide). Thermodynamic and activation parameters of all elementary stages in the gas phase are calculated. It is shown that different mechanisms are involved in the course of the reaction: at early stages, both concerted and two-stage pathways of self-catalysis can be realized with equal probability; as the product is formed, the preferred route of reaction becomes stage autocatalysis with the limiting first stage.
Keywords
механизм аминолиз бензокаин янтарный ангидрид расчет DFT (ωВ97M—V/ma-def2-QZVPP//r²SCAN-3c)
Date of publication
29.11.2024
Year of publication
2024
Number of purchasers
0
Views
6

References

  1. 1. Fantozzi N., Volle J.-N., Porcheddu A. et al. // Chem. Soc. Rev. 2023. V. 52. P. 6680. https://doi.org/10.1039/d2cs00997h
  2. 2. Brown D.G., Boström J. // J. Med. Chem. 2016. V. 59. № 10. P. 4443. https://doi.org/10.1021/acs.jmedchem.5b01409
  3. 3. Козьминых В.О. // Хим.-фарм. журн. 2006. Т. 40. № 1. С. 9.
  4. 4. Patil M.M., Rajput S.S. // Int. J. Pharm. and Pharm. Sci. 2014. V. 6. № 11. P. 8. https://journals.imovareacademics.in/index.php/ijpps/article/view/2715
  5. 5. Шахмарданова С.А., Гулевская О.Н., Хананашвили Я.А. и др. // Журн. фундам. мед. и биол. 2016. № 3. С. 16.
  6. 6. Колотова Н.В., Чащина С.В. // Вопр. биол., мед. и фармацевт. химии. 2020. Т. 23. № 7. С. 9.
  7. 7. Жакина Л.Х., Курапова М.Ю., Газалиев А.М., Нуркенов О.Л. // Журн. общ. хим. 2008. Т. 78. Вып. 6. С. 1026.
  8. 8. Srivastava R., Tiwari D.K., Dutta P.K. // Int. J. Biol. Macromol. 2011. V. 49. P. 863. https://doi.org/10.1016/j.ijbiomac.2011.07.015
  9. 9. Савелова В.А., Олейник Н.М. Механизмы действия органических катализаторов: бифункциональный и внутримолекулярный катализ. Киев: Наукова думка, 1990. 296 с.
  10. 10. Соломин В.А., Кардаш И.Е., Сиасовский Ю.С. и др. // Докл. АН СССР. 1977. Т. 236. № 1. С. 139.
  11. 11. Калиниш К.К. // Изв. АН СССР. 1988. Т. 37. № 9. С. 1978. [Kalnini’sh, K.K. // Rus. Chem. Bull. 1988. V. 37. № 9. P. 1768. https://doi.org/10.1007/BF00962484]
  12. 12. Садовников А.Н. // Изв. вузов. Химия и хим. технология. 2007. Т. 50. № 5. С. 3. [Sadovnikov A.I. // Rus. J. Chem. Tech. 2007. V. 50. № 5. P. 3.]
  13. 13. Hipkin J., Satchell D.P.N. // J. Chem. Soc. B. 1966. P. 345. https://doi.org/10.1039/129660000345
  14. 14. Левина М.А., Крашенинников В.Г., Забалов М.В., Тигер Р.П. // Высокомолекуляр. соединения. Сер. Б. 2014. Т. 56. № 2. С. 152.
  15. 15. Tyurina Т.G., Kryuk Т.V., Kudryavtsevа Т.А. // J. Phys. Conf. Ser. 1658. 2020. P. 012063. https://doi.org/10.1088/1742-6596/1658/1/012063
  16. 16. Тюрина Т.Г., Крюк Т.В. // ЖПХ. 2019. Т. 92. № 3. С. 306. [Тюрина Т.Г., Крюк Г.У. // Russ. J. Appl. Chem. 2019. V. 92. № 3. P. 351. https://doi.org/10.1134/S1070427219030054]
  17. 17. Kruger H.G. // J. Mol. Struct.: THEOCHEM 2002. V. 577. № 2–3. P. 281. https://doi.org/10.1016/S0166-1280 (01)00672-8
  18. 18. Ilieva S., Galabov B., Musaev D.G. et al. // J. Org. Chem. 2003. V. 68. № 4. P. 1496. https://doi.org/10.1021/jo0263723
  19. 19. Petrova T., Okovyvyy S., Gorb L., Leszczynski J. // J. Phys. Chem. A. 2008. V. 112. P. 5224. https://doi.org/10.1021/jp7102897
  20. 20. Chen R., Luo X., Liang G. // Theor. Chem. Acc. 2015. V. 134. P. 32. https://doi.org/10.1007/s00214-015-1634-6
  21. 21. Забалов М.В., Левина М.А., Крашенинников В.Г., Тисер Р.П. // Изв. РАН. Сер. Хим. 2014. № 8. С. 1740.
  22. 22. Vainio M.J., Johnson M.S. // Chem. Inf. Model. 2007. V. 47. P. 2462. https://doi.org/10.1021/c16005646
  23. 23. Stewart J.J.P. Stewart Computational Chemistry. 2016. Colorado Springs, CO, USA. http://OpenMOPAC.net
  24. 24. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. V. 152. P. 224108. https://doi.org/10.1063/5.0004608
  25. 25. Grimme S., Hansen A., Ehlert S., Mewes J.M. // J. Chem. Phys. 2021. V. 15460. P. 064103. https://doi.org/10.1063/5.0040021
  26. 26. Furness J.W., Kaplan A.D., Ning J. et al. // J. Phys. Chem. Lett. 2020. V. 11(19). P. 8208. https://doi.org/10.1021/acs.jpelett.0c02405
  27. 27. Weigend F., Alhrichs R. // Phys. Chem. Phys. Chem. 2005. V. 7. P. 3297. https://doi.org/10.1039/B508541A
  28. 28. Kruse H., Grimme S. // J. Chem. Phys. 2012. V. 136(15). P. 154101. https://doi.org/10.1063/1.3700154
  29. 29. Caldeweyher E., Ehlert S., Hansen A. et al. // Ibid. 2019. V. 150. P. 154122. https://doi.org/10.1063/1.5090222
  30. 30. Huniar U., Ning J., Furness J.W. et al. // Ibid. 2021. V. 15460. P. 061101. https://doi.org/10.1063/5.0041008
  31. 31. Ehlert S., Grimme S., Hanson A. // J. Phys. Chem. (A). 2022. V. 126. P. 3521. https://doi.org/10.1021/acs.jpca.2c02439
  32. 32. Kingsbury R., Gupta A., Bartel C. et al. // Phys. Rev. Mater. 2022. V. 6. P. 013801. https://doi.org/10.1103/PhysRevMaterials.6.013801
  33. 33. Grimme S. // Chem. Eur. J. 2012. V. 18(32). P. 9955. https://doi.org/10.1002/chem.201200497
  34. 34. Zheng J., Xu X., Truhlar D.G. // Theor. Chem. Acc. 2011. V. 128. P. 295. https://doi.org/10.1007/s00214-010-0846-z
  35. 35. Mardirossian N., Head-Gordon M. // J. Chem. Phys. 2016. V. 144. P. 214110. https://doi.org/10.1063/1.4952647
  36. 36. Vydrov O.A., Van Voorhis T. // Ibid. 2010. V. 133. P. 244103. https://doi.org/10.1063/1.3521275
  37. 37. Goerigk L., Mehta N. // Aust. J. Chem. 2019. V. 72. P. 563. https://doi.org/10.1071/CH19023
  38. 38. Fukui K. // Acc. Chem. Res. 1981. V. 14. P. 363. https://doi.org/10.1021/ar00072a001
  39. 39. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
  40. 40. Li Y. Energy Diagram Plotter (CDXML 3.5.2), 2023. https://doi.org/10.5281/zenodo.7634466
  41. 41. Insausi A., Calabrese C., Parra M., et al. // Chem. Commun. 2020. V. 56(45). P. 6094. https://doi.org/10.1039/D0CC007604
  42. 42. Longarie A., Fernández J.A., Unamuno I., Castano F. // Chem. Phys. 2000. V. 260 (1–2). P. 83. https://doi.org/10.1016/S0301-0104 (00)00164-6
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library