RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

INFLUENCE OF THE METHOD OF CATALYST PRODUCTION ON THE PROPERTIES OF SYNTHESIZED CARBON FOR ELECTROCHEMICAL SYSTEMS

PII
S0044453725060076-1
DOI
10.31857/S0044453725060076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
879-886
Abstract
The results of investigation of the influence of the method of preparation on the properties of Co/Mo/MgO catalysts and carbon nanotubes (CNTs) synthesized on them by chemical vapor deposition are presented. The catalysts were prepared by modified precipitation method and glycine-nitrate method. The structure and properties of CNTs were studied by low-temperature nitrogen adsorption, scanning and transmission electron microscopy, and Raman spectroscopy. The effect of the addition of synthesized CNTs on the conductivity of NMCS11 (LiNiMnCoO) based cathode material was investigated.
Keywords
углеродные нанотрубки химическое осаждение из газовой фазы катализатор электрохимические накопители энергии
Date of publication
02.12.2024
Year of publication
2024
Number of purchasers
0
Views
6

References

  1. 1. Doustan F., Pasha M.A. // Fuller. Nanotub. Carbon Nanostructures. 2016. V. 24. № 1. P. 25.
  2. 2. Hosseini A.A., Doustan F., Akbarzadeh Pasha M. // J. Nanostruct. 2013. V. 3. № 3. P. 333.
  3. 3. Lobiak E.V., Shlyakhova E.V., Gusel’nikov A.V.et al. // Phys. Status Solidi B Basic Res. 2018. V. 255. № 1. P. 1700274.
  4. 4. Zaretskiy S.N., Hong Y.K., Ha D.H. et al. // Chem. Phys. Lett. 2003. V. 372. № 1—2. P. 300.
  5. 5. Park J.B., Choi G.S., Cho Y.S. et al. // J. Cryst. Growth. 2002. V. 244. № 2. P. 211.
  6. 6. Awadallah A.E., Aboul-Enein A.A., Azab M.A., Abdel-Monem Y.K. // Fuller. Nanotub. Carbon Nanostructures. 2017. V. 25. № 4. P. 256.
  7. 7. Yang L., Zhao T., Jalil A. et al. // Appl. Surf. Sci. 2023. № 637. P. 157889.
  8. 8. Qingwen L., Hao Y., Yan C. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 1179.
  9. 9. Li H., Shi C., Du X. et al. // Mater. Lett. 2008. V. 62. № 10—11. P. 1472.
  10. 10. Lee C.J., Park J., Kim J.M. et al. // Chem. Phys. Lett. 2000. V. 327. № 5—6. P. 277.
  11. 11. Maruyama T., Kondo H., Ghosh R. et al. // Carbon. 2016. № 96. P. 6—13.
  12. 12. Sun T., Fan G., Li F. // Ind. Eng. Chem. Res. 2013. V. 52. № 16. P. 5538.
  13. 13. Chen D.R., Chitranshi M., Schulz M., Shanov V. // Nano Life. 2019. V. 9. № 4. P. 1930002.
  14. 14. Kumar M., Ando Y. // J. Nanosci. Nanotechnol. 2010. V. 10. № 6. P. 3739.
  15. 15. Pirard S.L., Douven S., Bossuot C. et al. // Carbon. 2007. V. 45. № 6. P. 1167.
  16. 16. Lobiak E.V., Shlyakhova E.V., Bulusheva L.G. et al. // J. Alloys Compd. 2015. № 621. P. 351.
  17. 17. Coquay P., Peigney A., De Grave E. et al. // J. Phys. Chem. B. 2005. V. 109. № 38. P. 17813.
  18. 18. Pérez-Mendoza M., Vallés C., Maser W.K. et al. // Nanotechnology. 2005. V. 16. № 5. P. S224.
  19. 19. Cordier A., de Resende V.G., Weibel A. et al. // J. Phys. Chem. C. 2010. V. 114. № 45. P. 19188.
  20. 20. Jourdain V., Bichara C. // Carbon. 2013. № 58. P. 2.
  21. 21. Kozawa A., Kiribayashi H., Ogawa S. et al. // Diam. Relat. Mater. 2016. № 63. P. 159.
  22. 22. Xu Y., Dervishi E., Saini V. et al. // J. Mater. Chem. 2008. V. 18. № 47. P. 5738.
  23. 23. Yu C.L., Sakthinathan S., Hwang B.Y. et al. // Int. J. Hydrogen Energy. 2020. V. 45. № 32. P. 15752.
  24. 24. Kim J., Lee H., Lee J. et al. // Materials. 2023. V. 16. № 22. P. 7191.
  25. 25. Ventrapragada L.K. Zhu, J., Creager, S.E. et al. // ACS omega. 2018. V. 3. № 4. P. 4502.
  26. 26. Мацукевич И.B., Крутько Н.П., Липай Ю.В., Овсеенко Л.В. // Известия НАН Беларуси. Серия химических наук. 2020. Т. 56. № 1. С. 33.
  27. 27. Kim K.H., Oh Y., Islam M.F. // Adv. Funct. Mater. 2013. V. 23. № 3. P. 377.
  28. 28. Li Z., Deng L., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2023. № 135. P. 101089.
  29. 29. Quéméré P. // J. Open Source Softw. 2024. V. 9. № 96. P. 5868.
  30. 30. Jiang Y., Wang H., Li B., Zhang Y. // Carbon. 2016. № 107. P. 600.
  31. 31. Gao B., Zhang Y., Zhang J.et al. // J. Phys. Chem. C. 2008. V. 112. № 22. P. 8319.
  32. 32. Ichinose Y., Yoshida A., Horiuchi K. et al. // Nano Lett. 2019. Т. 19. № 10. P. 7370.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library