RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

VARIATION OF POLYMER MATERIAL OF WALLS AS A TOOL TO INFLUENCE MECHANOCHEMICAL TRANSFORMATIONS INVOLVING MOLECULAR CRYSTALS

PII
S0044453725060119-1
DOI
10.31857/S0044453725060119
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 6
Pages
912-918
Abstract
On the example of two polymorphic transformations in crystals of organic compounds (glycine and carbamazepine) and dehydration of carbamazepine dihydrate the influence of the material of the drum of a vibrating ball mill (steel or various polymers) on the result of mechanical impact on the sample is shown, as well as the possibility to use for studying this influence the method of manufacturing polymer liners in steel drums by 3D printing available in laboratory conditions.
Keywords
механохимия 3D-печать полиморфные превращения дегидратация глицин карбамазепин
Date of publication
29.11.2024
Year of publication
2024
Number of purchasers
0
Views
14

References

  1. 1. Espro C., Rodriguez-Padron D. // Curr. Opin. Green Sustainable Chem. 2021. V. 30. P. 100478. https://doi.org/10.1016/j.cogsc.2021.100478
  2. 2. Ni S., Hribersek M., Baddigam S.K., et al. // Angew. Chem. Intern. Ed. 2021. V. 60. № 12. P. 6660. https://doi.org/10.1002/anie.202010202
  3. 3. Ardila-Fierro K.J., Hernández J.G. // ChemSusChem. 2021. V. 14. № 10. P. 2145. https://doi.org/10.1002/cssc.202100478
  4. 4. Fantozzi N., Volle J.N., Porcheddu A. et al. // Chem. Soc. Rev. 2023. V. 52. P. 6680. https://doi.org/10.1039/D2CS00997H
  5. 5. Mohammed J., Osuegba O.S., Bulus Y.E. // Res. J. Chem. Sci. 2024. V. 14. № 1. P. 63. https://isca.me/rjcs/Archives/v14/11/8.IS-CA-RJCS-2023-022.pdf
  6. 6. Hasa D., Schneider Rauber G., Voinovich D., Jones W. // Angew. Chem. 2015. V. 127. № 25. P. 7479. https://doi.org/10.1002/ange.201501638
  7. 7. Hasa D., Carlino E., Jones W. // Cryst. Growth Des. 2016. V. 16. № 3. P. 1772. https://doi.org/10.1021/acs.cgd.6b00084
  8. 8. Frisčić T., Halasz I., Beldon P.J. et al. // Nat. Chem. 2013. V. 5. № 1. P. 66. https://doi.org/10.1038/nchem.1505
  9. 9. Do J.L., Frisčić T. // ACS Cent. Sci. 2017. V. 3. № 1. P. 13. https://doi.org/10.1021/acscentsci.6b00277
  10. 10. Julien P.A., Frisčić T. // Cryst. Growth Des. 2022 V. 22. № 9. P. 5726. https://doi.org/10.1021/acs.cgd.2c00587
  11. 11. Michalchuk A.A., Emmerling F. // Angew. Chem. Intern. Ed. 2022 V. 61. № 21. P. e202117270. https://doi.org/10.1002/anie.202117270
  12. 12. Willis-Fox N. // Front. Chem. (Lausanne, Switzerland). 2024. V. 12. P. 1490847. https://doi.org/10.3389/fchem.2024.1490847
  13. 13. Gracin D., Štrukli V., Frisčić T. et al. // Angew. Chem. Intern. Ed. 2014. V. 53. № 24. P. 6193. https://doi.org/10.1002/anie.201402334
  14. 14. Lukin S., Tireli M., Stolar T. et al. // J. Amer. Chem. Soc. 2019. V. 141. № 3. P. 1212. https://doi.org/10.1021/jacs.8b12149
  15. 15. Lukin S., Užarević K., Halasz I. // Nat. Protoc. 2021. V. 16. № 7. P. 3492. https://doi.org/10.1038/s41596-021-00545-x
  16. 16. Julien P.A., Arhangelskis M., Germann L.S. et al. // Chem. Sci. 2023. V. 14. № 43. P. 12121. https://doi.org/10.1039/d3sc04082h
  17. 17. Stojaković J., Farris B.S., MacGillivray L.R. // Chem. Commun. 2012. V. 48. № 64. P. 7958. https://doi.org/10.1039/C2CC33227B
  18. 18. Baier D.M., Spula C., Famensich S. et al. // Angew. Chem. Intern. Ed. 2023. V. 62. № 20. P. e202218719. https://doi.org/10.1002/anie.202218719
  19. 19. Martinez V., Stolar T., Karadeniz B., et al. // Nat. Rev. Chem. 2023. V. 7. № 1. P. 51. https://doi.org/10.1038/s41570-022-00442-1
  20. 20. Pickhardt W., Beakovic C., Mayer M., et al. // Angew. Chem. Intern. Ed. 2022. V. 61. № 34. P.e202205003. https://doi.org/10.1002/anie.202205003
  21. 21. Pickhardt W., Siegfried E., Fabig S. et al. // Angew. Chem. Intern. Ed. 2023. V. 62. № 27. P.e202301490. https://doi.org/10.1002/anie.202301490
  22. 22. Germann L.S., Arhangelskis M., Etter M. et al. // Chem. Sci. 2020. V. 11. № 37. P. 10092. https://doi.org/10.1039/D0SC03629C
  23. 23. Losev E., Arkhipov S., Kolydakov D. et al. // CrystEngComm. 2022. V. 24. № 9. P. 1700. https://doi.org/10.1039/D1CE01703A
  24. 24. Linberg K., Emmerling F., Michalchuk A.A. // Cryst. Growth Des. 2022. V. 23. № 1. P. 19. https://doi.org/10.1021/acs.cgd.2c01227
  25. 25. Chatziddi A., Škofepová E., Kohout M. et al. // CrystEngComm. 2022. V. 24. № 11. P. 2107. https://doi.org/10.1039/D1CE01561C
  26. 26. Rappen M.F., Beissel L., Geisler J. et al. // RSC Mechanochem. 2024. V. 1. № 4. P. 386. https://doi.org/10.1039/D4MR00059E
  27. 27. Michalchuk A.A., Tumanov I.A., Boldyreva E.V. // CrystEngComm. 2019. V. 21. № 13. P. 2174. https://doi.org/10.1039/C8CE02019K
  28. 28. Архипов С.Г., Колыбалов Д.С., Лосев Е.А. и др. // Способ осуществления эксперимента для исследования механохимических превращений и устройство для реализации протекания механохимических превращений, Номер: RU2794882C1, опубликован 25 апр. 2023 г., Заявка 2022116688 от 21 июня 2022 г.
  29. 29. Oglenko A.G., Drebushchak V.A., Bogdanova E.G. et al. // J. Therm. Anal. Calorim. 2017. V. 127. № 2. P. 1593. https://doi.org/10.1007/s10973-016-6003-8
  30. 30. Boldyreva E. // Israel J. Chem. 2021. V. 61. № 11–12. P. 828. https://doi.org/10.1002/ijch.202100103
  31. 31. Grzesiak A.L., Lang M., Kim K. et al. // J. Pharm. Sci. 2003. V. 92. № 11. P. 2260. https://doi.org/10.1002/jps.10455
  32. 32. Arlin J.B., Price L.S., Price S.L. et al. // Chem. Commun. 2011. V. 47. № 25. P. 7074. https://doi.org/10.1039/C1CC11163J
  33. 33. Kamali N., Gniado K., McArdle P. et al. // Org. Process Res. Dev. 2018. V. 22. № 7. P. 796. https://doi.org/10.1021/acs.oprd.8b00073
  34. 34. Zheltikova D., Losev E., Boldyreva E. // CrystEngComm. 2023. V. 25. № 34. P. 4879. https://doi.org/10.1039/D3CE00544E
  35. 35. Scaramuzza D., Schneider Rauber G., Voinovich D. et al. // Cryst. Growth Des. 2018. V. 18. № 9. P. 5245. https://doi.org/10.1021/acs.cgd.8b00687
  36. 36. Boldyreva E.V., Drebushchak T.N., Shutova E.S. // Zeitschr. Kristallogr.-Cryst. Mater. 2003. V. 218. № 5. P. 366. https://doi.org/10.1524/zkri.218.5.366.20729
  37. 37. El Hassan N., Ikni A., Gillet J.-M. et al. // Cryst. Growth Des. 2013. V. 13. № 7. P. 2887. https://doi.org/10.1021/cg4002994
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library