- PII
- S0044453725060143-1
- DOI
- 10.31857/S0044453725060143
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 6
- Pages
- 942-951
- Abstract
- The structure of integral curves obtained by processing chronopotentiograms (CPG) of an aluminum anode polarized by a weak (at the level of one to several μA/cm) current in chloride-containing medium is self-similar. This universal property allows us to find their fitting function and calculate the reduced (compressed dependence; the initial number of points is 1000, described by the number of AFC-14 modes). The initial curve is invariant with respect to its transformed counterpart after five-fold compression. For two different types of data, obtained with open circuit and with metal polarization by microcurrent, a common fitting platform related to its parameters can be obtained. There are various methods of detrending: i.e., obtaining a trend from the original trendless noise. The simplest method of obtaining a trend that does not give computational errors is obtained from a numerical integration formula using the trapezoidal method. It is this trend, obtained from the original trendless sequence without additional data processing errors, that it makes sense to define as a clear trend. The approximation parameters can be used to compare various random processes, including those caused by reactions on the metal surface with changes in its microrelief during redox processes.
- Keywords
- алюминий хлоридсодержащий раствор анодная поляризация ток хроноионограмма флуктуации принцип самоподобия
- Date of publication
- 07.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 8
References
- 1. Nigancioglu K., Holtan H. // Electrochim. Acta. 1979. № 24. P. 1229
- 2. Hurlen T., Lian H., Odegard O.S., Valant T. // Electrochim. Acta. 1984. № 29. P. 579
- 3. Lenderink H.J.W., van der Linden M., de Wit J.H.W. // Electrochim. Acta. 1993. № 38. P. 1989
- 4. Kolies A., Besing A.S., Baradlai P., et al. // J. Electrochem. Soc. 2001. № 148. P. B251
- 5. Verpoort F., Haemers T., Roose P., Maes J.P. // Appl. Spectr. 1999. № 53. P. 1528
- 6. Al Mayouf A.M. // Corr. Prev. Control. 1996. 43. P. 68
- 7. Radošević J., Kiškić M., Despić A.R. // J. Appl. Electrochem. 1992. № 22. P. 649
- 8. Garrigues L., Pebere N., Dabosi F. // Electrochim. Acta. 1996. № 41. P. 1209
- 9. Burri G., Lucati W., Haas O. // J. Electrochem. Soc. 1989. № 136. P. 267
- 10. Equey J.-F., Müller S., Desilvestro J., Haas O. // Ibid. Soc. 1992. № 139. P. 1499
- 11. Breslin C.B., Rudd A.L. // Corros. Sci. 2000. № 42. P. 1023
- 12. Aballe A., Bethencourt M., Botana F.J., Marcos M. // Electrochim. Acta. 1999. № 44. P. 4805
- 13. Pagitsas M., Sazou D. // J. Electroanal. Chem. 1999. № 471. P. 132
- 14. Uruchurtu J.C., Dawson J.L. // Corrosion. 1987. № 43. P. 19
- 15. Isaac J.W., K.R. Hebert J. // Electrochem. Soc. 1999. № 146. P. 502
- 16. Mansfeld F., Xiao H., Han L.T., Lee C.C. // Prog. Org. Coat. 1997. № 30. P. 89
- 17. Mansfeld F., Lee C.C. // J. Electrochem. Soc. 1997. № 144. P. 2068
- 18. Greisiger H., Schauer T. // Prog. Org. Coat. 2000. № 39. P. 31
- 19. Mills D.J., Mabbutt S. // Ibid. 2000. № 39. P. 41
- 20. Nagulo A., Mansfeld F. // Corros. Sci. 2001. № 43. P. 2001
- 21. Tan Y.J., Bailey S., Kinsella B. // Ibid. 2002. № 44. P. 1277
- 22. Aballe A., Bethencourt M., Botana F.J., et al. // Electrochim. Acta. 2002. № 47. P. 1415
- 23. Mansfeld F., Sun Z., Hsu C.H. // Ibid. 2001. № 46. P. 3651
- 24. Smulko J., Darowicki K., Zielinski A. // Ibid. 2002. № 47. P. 1297
- 25. Biervagen G.P. // J. Electrochem. Soc. 1994. № 141. P. L155
- 26. Bertocci U., Gabrielli C., Huet F., Keddam M. // Ibid. 1997. № 144. P. 31
- 27. Mansfeld F., Xiao H. // Ibid. 1994. № 141. P. 1403
- 28. Xiao H., Mansfeld F. // Ibid. 1994. № 141. P. 2332
- 29. Mansfeld F., Sun Z., Hsu C.H., Nagulo A. // Corros. Sci. 2001. № 43. P. 341
- 30. Cheng Y.F., Luo J.L., Wilmont M. // Electrochim. Acta. 2000. № 45. P. 1763
- 31. Bautista A., Bertocci U., Huet F. // J. Electrochem. Soc. 2001. № 148. P. B412
- 32. Lowe A.M., Eren H., Bailey S.I. // Corros. Sci. 2003. № 45. P. 941
- 33. Cotits R.A., Al-Awadhi M.A.A., Al-Mazeedi H., Turgoose S. // Electrochim. Acta. 2001. № 46. P. 3665
- 34. Smulko J., Darowicki K. // J. Electroanal. Chem. 2003. № 545. P. 59
- 35. Aballe A., Huet F. // J. Electrochem. Soc. 2002. № 149. P. B89
- 36. Cotits R.A. Interpretation of electrochemical noise data // Corrosion. 2001. 57. P. 265
- 37. Mansfeld F. // Proceedings of the 18th Int. Conference on Noise and Fluctuations-ICNF; 2005 Aug 24; Los Angeles, CA (USA): American Institute of Physics; 2005. P. 623
- 38. Pride S.T, Scully J.R, Hudson J.L. // J. Electrochem Soc. 1994. № 141. P. 3028
- 39. Lou W, Ogura K. // Electrochim. Acta. 1995. № 40. P. 667
- 40. Sazou D., Diamantopoulou A., Pagitsas M. // J. Electroanal Chem. 2000. № 489. P. 1
- 41. Bassett M.R, Hudson J.L. // J. Phys. Chem. 1989. № 93. P. 2731
- 42. Dewald H.D., Parmananda P., Rollins R.W. // J. Electrochem Soc. 1993. № 140. P. 1969
- 43. Press W.H., Flannery B.P., Teukolsky S.A. et al. // Cambridge (UK). V. 1. Cambridge University Press, 1992. 963 p.
- 44. Schauer T., Greisiger H., Dulog L. // Electrochim Acta. 1998. № 43. P. 2423
- 45. Burg J.P. Modern Spectrum Analysis. / Ed by D.G. Childers. New York (NY): IEEE Press, 1978. 334 p.
- 46. Pujar M.G., Anita T., Shaikh H., et al. // Int. J. Electrochem. Sci. 2007. № 2. P. 301
- 47. Bertocci U., Frydman J., Gabrielli C., et al. // J. Electrochem. Soc. 1998. № 145. P. 2780
- 48. Van den Bos A. // IEEE Trans. Inform. Theory. 1997. № 17. P. 493
- 49. Edward J.A., Fitelson M.M. // IEEE Trans. Inform. Theory. 1973. № 19. P. 232
- 50. Nigmatullin Raoul R., Yang Quan Chen // Mathematics. 2023. № 11. P. 278
- 51. Nigmatullin R.R., Lino P., Maione G. // New Digital Signal Processing Methods Applications to Measurement and Diagnostics. ISBN978-3-030-45359-6 (eBook). https://doi.org/10.1007/978-3-030-45359-6. Springer, 2020