- PII
- S3034553725070055-1
- DOI
- 10.7868/S3034553725070055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 7
- Pages
- 1004-1015
- Abstract
- The synthesis of nickel catalyst for hydrogenation of carbon dioxide to methane on a carrier obtained by rice husk pyrolysis is proposed. The original synthetic approach consists in annealing rice husk in the presence of nickel nitrate at 500–700C, which reduces the labor, time and energy consumption for the synthesis. Comparison of nickel catalysts obtained using different conditions of calcination in different number of stages shows that the proposed method allows to achieve activity (18.8 h), comparable to literature data. At the same time, Mn promotion significantly improves its performance. This approach may be important for the development of efficient catalysts for CO hydrogenation with methane production and further application of rice husk in catalysis.
- Keywords
- никелевые катализаторы гидрирование диоксид углерода метан рисовая шелуха
- Date of publication
- 13.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 39
References
- 1. MohdRidzuan N.D., Shaharun M.S., Anawar M.A., Ud-Din I. // Catalysts. 2022. V. 12. № 5. P. 469. https://doi.org/10.3390/catal12050469.
- 2. Netskina O.V., Dmitruk K.A., Mazina O.I. et al. // Mater. 2023. V. 16. № 7. P. 2616. https://doi.org/10.3390/ma16072616.
- 3. Lim J.Y., Safder U., How B.S. et al. // Appl. Energy. 2021. V. 283. P. 116302. https://doi.org/10.1016/j.apenergy.2020.116302.
- 4. Šnajdrová V., Hlinčík T., Ciahotný K., Polák L. // Chem. Pap. 2018. V. 72. P. 2339. https://doi.org/10.1007/s11696-018-0456-0.
- 5. Aziz M.A.A., Jalil A.A., Triwahyono S. et al. // Appl. Catal. B. 2014. V. 147. P. 359. https://doi.org/10.1016/j.apcatb.2013.09.015.
- 6. Rahmani S., Rezaei M., Meshkani F. // J. Ind. Eng. Chem. 2014. V. 20. № 6. P. 4176. https://doi.org/10.1016/j.jiec.2014.01.017.
- 7. Singh B. Rice husk ash. In Woodhead Publishing Series in Civil and Structural Engineering, Waste and Supplementary Cementitious Materials in Concrete / Eds. R. Siddique, P. Cachim. Woodhead Publishing. 2018. P. 417. https://doi.org/10.1016/B978-0-08-102156-9.00013-4.
- 8. Mazilan M.S.R., Sulaiman S.Z., Semawi N.H. et al. // Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.08.143.
- 9. Chernyak S., Rodin V., Novotortsev R.et al. // Catal. Today. 2023. V. 424. P. 113846. https://doi.org/10.1016/j.cattod.2022.07.014.
- 10. Paviotti M.A., Salazar Hoyos L.A., Busilacchio V. et al. // J. CO2 Util. 2020. V. 42. P. 101328. https://doi.org/10.1016/j.jcou.2020.101328.
- 11. Thommes M. et al. // Pure and applied chemistry. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac 2014-1117
- 12. Lv C., Xu L., Chen M. et al. // Front. Chem. 2020. V. 8. P. 269. https://doi.org/10.3389/fchem.2020.00269.
- 13. Ye R.-P., Gong W., Sun Z. et al. // Energy. 2019. V. 188. P. 116059. https://doi.org/10.1016/j.energy.2019.116059.
- 14. Zhu P., Chen Q., Yoneyama Y., Tsubaki N. // RSC Adv. 2014. № 4. P. 64617. https://doi.org/10.1039/C4RA12861C.
- 15. Zhao Z.W., Zhou X., Liu Y.-N. et al. // Catal. Sci. Technol. 2018. Т. 8. № 12. P. 3160. https://doi.org/10.1039/C8CY00468D.