RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

SORPTION CAPACITY OF POLYMER BASED ON CARBOXYMETHYLCELLULOSE AND GLYCIDYLACRYLATE TOWARDS METAL IONS

PII
S3034553725070151-1
DOI
10.7868/S3034553725070151
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 7
Pages
1094-1101
Abstract
The sorption ability of the synthesized polymer based on carboxymethylcellulose and glycidylacrylate towards Cu, Ni, Fe, Mn ions has been studied. It has been shown that the sorption of metal ions is reliably described by the Langmuir model, and the process itself has a physical character. By the method of thermogravimetric analysis it has been established that the process of thermodegradation of the polymer occurs in three steps, and of its complex with copper – in four steps. The activation energy of decomposition of the initial polymer for each step is in the range of 29–57 kJ/mol, and for its complex with copper – 58–120 kJ/mol. The introduction of Cu(II) increases the thermostability of the obtained polymer based on carboxymethylcellulose.
Keywords
глицидилакрилат карбоксиметилцеллюлоза сорбция ионы тяжелых металлов
Date of publication
30.01.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. van der Perk M. // Soil and Water Contamination (2nd ed.). London: CRC Press, 2017. 428 р.
  2. 2. Tamez C., Hernandez R., Parsons. J.G. // Microchem. J. 2016. V. 125. P. 97. https://doi.org/10.1016/j.microc.2015.10.028
  3. 3. Ntimbani R.N., Simate G.S., Ndlovu S. // J. Environ. Chem. Eng. 2015. V. 3. № 2. P. 1258. https://doi.org/10.1016/j.jece.2015.02.010
  4. 4. Martin-Lara M.A., Blazquez G., Calero M. et al. // Int. J. Miner. Process. 2016. V. 148. P. 72. https://doi.org/10.1016/j.minpro.2016.01.017
  5. 5. Ayala-Cabrera J.F., Trujillo-Rodriguez M.J., Pino V. et al. // Int. J. Environ. Anal. Chem. 2016. V. 96. № 2. P. 101. https://doi.org/10.1080/03067319.2015.1128538
  6. 6. Xu Z., Gao G., Pan B. et al. // Water Res. 2015. V. 87. P. 378. https://doi.org/10.1016/j.watres.2015.09.025
  7. 7. Bojic A.L., Bojic D., Andjelkovic T. // J. Hazard. Mater. 2009. V. 168. № 2. P. 813. https://doi.org/10.1016/j.jhazmat.2009.02.096
  8. 8. Duan L., Hu N., Wang T. et al. // Chem. Eng. Commun. 2016. V. 203. № 1. P. 28. https://doi.org/10.1080/00986445.2014.956735
  9. 9. Bailey S.E., Olin T.J., Bricka R.M., Adrian D.D. // Water Res. V. 33. № 11. P. 2469. https://doi.org/10.1016/s0043-1354 (98)00475-8
  10. 10. Altinisik A., Yurdakoc K. // Water Treat. 2015. V. 2. P. 994. https://doi.org/10.1080/19443994.20151091
  11. 11. Rao G.P., Lu C., Su F. // Sep. Purif. Technol. 2007. V. 58. P. 224. https://doi.org/10.1016/j.seppur.2006.12.006
  12. 12. Hu K., Wang K., Liu J., Dong Q. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4606. https://doi.org/10.1080/19443994.2014.1001442
  13. 13. Pawar R.R., Lalhmunsiama A., Bajaj H., Lee S.-M. // J. Ind. Eng. Chem. 2016. V. 34. P. 213. https://doi.org/10.1016/j.jiec.2015.11.014
  14. 14. Sharma N., Tiwari A. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4523. https://doi.org/10.1080/19443994.2014.991945
  15. 15. Cheung W., Ng J., Mckay G. // J. Chem. Technol. Biotechnol. 2003. V. 78. P. 562. https://doi.org/10.1002/jctb.836
  16. 16. Alshahateet S.F., Jiries A.G., Al-Trawneh S.A. et al. // Desalin. Water Treat. 2016. V. 57. № 10. P. 4512. https://doi.org/10.1080/19443994.2014.991762
  17. 17. Neagu V., Mikhalovsky. S. // J. Hazard. Mater. 2010. V. 183. № 1. P. 533. https://doi.org/10.1016/j.jhazmat.2010.07.057J
  18. 18. Rutkowska J., Kilian K., Pyrzynska K. // Eur. Polym. J. 2008. V. 44. № 7. P. 2108. https://doi.org/10.1016/j.eurpolymj.2008.04.009
  19. 19. Uguzdogan E., Denkbaş E.B., Kabasakal O.S. // J. Hazard. Mater. 2010. V. 177. № 1. P. 119. https://doi.org/10.1016/j.jhazmat.2009.12.004
  20. 20. El-Sakhawy M., Kamel S., Salama A., Sarhan H.-A. // J. Drug. Deliv. 2014. V. 2014. Article ID575969. https://doi.org/10.1155/2014/575969
  21. 21. Lawniczak J.E., Posey-Dowty J., Seo K.S., Walker K. // Paint Coat. Ind. 2003. V. 19. № 6. P. 28.
  22. 22. Posey-Dowty J.D., Seo K.S., Walker K.R., Wilson A.K. // Surf. Coat. Int. Part B: Coat. Trans. 2002. V. 85. № 3. P. 203. https://doi.org/10.1007/BF02699510
  23. 23. McCreight K.W., Webster D.C., Kemp L.K. Patent US20050203278 A1 (2005).
  24. 24. Shelton M.C., Wilson A.K., Posey-Dowty J.D. et al. Patent EP 1603953 (2007).
  25. 25. Elwakeel K.Z., Rekaby M. // J. Hazard. Mater. 2011. V. 188. № 1–3. P. 10. https://doi.org/10.1016/j.jhazmat.2011.01.003
  26. 26. Sandic Z.P., Nastasovic A.B., Jovic-Jovicic N.P. et al. // J. Appl. Polym. Sci. 2011. V. 121. № 1. P. 234. https://doi.org/10.1002/app.33537
  27. 27. Chen C., Chiang C., Chen C.R. // Sep. Purif. Technol. 2007. V. 54. № 3. P. 396. https://doi.org/10.1016/j.seppur.2006.10.020
  28. 28. Liu C., Bai R., Hong L., Liu T. // J. Colloid. Interface Sci. 2010. V. 345. № 2. P. 454. https://doi.org/10.1016/j.jcis.2010.01.057
  29. 29. Евдокимов А.Н., Курзин А.В., Липин В.А. и др. // Бутлеровские сообщения. 2023. Т. 76. № 12. C. 167. https://doi.org/10.37952/ROI-jbc01/23-76-12-167
  30. 30. Филиппов Д.В., Фуфаева В.А., Шепелев М.В. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 397. https://doi.org/10.31857/S0044457X22030084
  31. 31. Filippov D.V., Fufaeva V.A., Shepelev M.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. Р. 375. https://doi.org/10.1134/S0036023622030081
  32. 32. Farah A., Razak A.S., Zularisam A.W. et al. // Cleaner Waste Systems. 2022. V. 3. Article ID100051. https://doi.org/10.1016/j.clwas.2022.100051
  33. 33. Itodo A.U., Itodo H.U. // Life Sci. J. 2010. V. 7. № 4. P. 31. https://doi.org/10.7537/marslsj070410.05
  34. 34. Hsieh C.-T., Teng H. // J. Chem. Technol. Biotechnоl. 2000. V. 75. № 11. Р. 1066. https://doi.org/10.1002/1097-4660 (200011)75:113.0.co;2-z
  35. 35. Зеленцов В.И., Дацко Т.Я. // ЭОМ. 2012. Т. 48. № 6. С. 65.
  36. 36. Salehi R., Dadashian F., Ekrami E. // J. Photochem. Photobiol. B. 2018. V. 11. Р. 9. https://doi.org/10.1016/j.jphotobiol.2016.10.012
  37. 37. Швыдко А.В., Тимофеева М.Н., Симонов П.А. // Сорбционные и хроматографические процессы. 2021. Т. 21. № 1. С. 42. https://doi.org/10.17308/sorpchrom.2021.21/3218
  38. 38. Almalike L.B. // Int. J. Adv. Res. Chem. Sci. 2017. V. 4. № 5. P. 9. https://doi.org/10.20431/2349–0403.0405002
  39. 39. Johnson R.D., Arnold F.H. // Biochim. Biophys. Acta. 1995. V. 1247. № 2. Р. 293. https://doi.org/10.1016/0167-4838 (95)00006-g
  40. 40. Jakubov T.S., Mainwaring. D.E. // J. Colloid. Interface Sci. 2002. V. 252. № 2. P. 263. https://doi.org/10.1006/jcis.2002.8498
  41. 41. Wu K., Wang Y., Hwu W. // Polym. Degrad. Stab. 2003. V. 79. № 2. P. 195. https://doi.org/10.1016/s0141-3910 (02)00261-6
  42. 42. Hasanzadeh R., Moghadam P.N., Bahri-Laleh N., Zare E.N. // Int. J. Polym. Sci. 2016. Article ID2610541. https://doi.org/10.1155/2016/2610541
  43. 43. Liu C., Bai R., Ly Q.S. // Water Res. 2008. V. 42. № 6–7. P. 1511. https://doi.org/10.1016/j.watres.2007.10.031
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library