RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

CASIMIR POLARIZATION OF THE ELECTROMAGNETIC FIELD VACUUM IN THE VICINITY OF PARTICLES AS A DETERMINANT OF THEIR INTERACTIONS: PHENOMENOLOGY

PII
S3034553725080014-1
DOI
10.7868/S3034553725080014
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 8
Pages
1125-1138
Abstract
It is shown that the introduction of non-zero volume of particles, as well as the notion of kasimirov polarization of electromagnetic field vacuum – EM-vacuum in the vicinity of atoms, atomic nuclei and elementary particles with formation of corresponding EM-polarons, allows to understand the physical essence of quantum phenomena and processes determined by "overlapping" (interaction) of kasimirov polarization regions in the vicinity of particles. The physical essence of the effect of "entanglement" ("entanglement") is discussed; the variety of processes of Bose-Einstein condensation of particles and formed condensates, the genesis of inertia forces arising in accordance with the 3rd law of Newton's mechanics at all levels of spatial and temporal organization of the universe; the key role of virtual photons in all the above processes. It is shown that within the framework of the previously proposed model of the dynamics of the universe as an integral open system the connections establishing the nature of irreversibility of the dynamics of all processes, up to the processes of energy transmission to electron subsystems of atoms and nuclear matter of nuclei, which is necessary for stabilization of functional activity of these systems, can be revealed. In particular, within the framework of the presented understanding of the physical essence of the phenomena of superconductivity and superfluidity, one of the key epistemological problems is solved – understanding of the physical basis of the manifestations of "nondissipativity" of these phenomena.
Keywords
поляризация Казимира EM-вакуума квантовая повязанность (запутанность) конденсация Бозе–Эйнштейна ядерная материя как конденсат БЭ силы инерции сверхтекучесть сверхпроводимость
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Кадомцев Б.Б. Динамика и информация. M.: Ред. УФН, 1997. 400 с.
  2. 2. Watrous J. The Theory of Quantum Information. Cambridge University Press, 2018. 598 p.
  3. 3. Einstein A., Podolsky B., Rosen N. // Phys. Rev. 1935. V. 47. Iss. 10. P. 777.
  4. 4. Fry E.S., Thomson R.C. // Phys. Rev. Lett. 1976. V. 37. P. 465–468.
  5. 5. Aspect A., Grangier P., Roger J. // Ibid. 1981. V. 47. P. 460.
  6. 6. Aspect A., Grangier P., Roger G. // Ibid. 1982. V. 49. P. 91.
  7. 7. Aspect A., Dalibard J., Roger G. // Ibid. 1982. V. 49. P. 1804.
  8. 8. Kless T.E., Shih Y.H., Sergienko A.V., Alley C.O. // Ibid.1993. V. 71. P. 3893.
  9. 9. Тимашев С.Ф. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1093. https://rdcu.be/cUWGM.
  10. 10. Тимашев С.Ф. // Там же. 2022. Т. 96. № 12. С. 1695.
  11. 11. Тимашев С.Ф. // Там же. 2024. Т. 98. № 4. С. 3. http://arxiv.org/abs/2404.08009v4.
  12. 12. Timashev S.F. Physical Vacuum as a System Manifesting Itself on Various Scales – From Nuclear Physics to Cosmology. arXiv:1107.1799v8 [physics.gen-ph]
  13. 13. Киттель Ч., Найт У., Рудерман М. Берклеевский курс физики. Т. 1. Механика. М.: Наука, Главная ред. физ.-мат. лит. 1975, 480 с.
  14. 14. Weinberg C.S. // Rev. Mod. Phys. 1989. V. 61. P. 1.
  15. 15. Somerville R.S., Dave R. Physical Models of Galaxy Formation in a Cosmological Framework. Ann. Rev. Astron. Astrophys, 2015. V. 53. P. 51.
  16. 16. Glazebrook K., Nanayakkara T., Corentin Schreiber C., et al. // Nature. 2024. V. 628. P. 277. arXiv:2308.05606v2 [astro-ph.GA] 14 Feb 2024.
  17. 17. Haro A.P., Dickinson M., Finkelstein S.L., et al. // Ibid. 2023. V. 622. P. 707. arXiv:2303.15431 [astro-ph.GA].
  18. 18. Sabit N., Munoz J.B., Kamionkowski M. // Phys. Rev. Lett. 2024. V. 132. P. 061002.
  19. 19. Maiolino, Jan Scholtz, J. Wustok et al. // Nature. 2024. V. 627. P. 59. 17 Jan 2024. arXiv:2305.12492.
  20. 20. Carniani S., Hainline K., D'Eugenio F. et al. // Ibid. 2024. V. 633. P. 318. arXiv:2405.18485 [astro-ph.GA]
  21. 21. Kozyrev N.A. Selected works. Leningrad: Publishing House of Leningrad University, 1991. 448 p.
  22. 22. Davies P.C.W. Superforce: The Search for a Grand Unified Theory of Nature. New York: Simon and Schuster, 1984.
  23. 23. Lessing A.M., Shara M.M., Hounsell R. // Astrophys. Journal. 2024. V. 973. № 2. P. 144. arXiv:2309.16856v2 12 Apr. 2023
  24. 24. Timashev S. // Intern. J of Astrophysics and Space Science. 2015. V. 3. № 4. P. 60. http://www.sciencepublishinggroup.com/journal/ paperinfo.aspx?journalid=302&doi=10.11648/j. jjass.20150304.12
  25. 25. Stickler B.A., Hornberger K., Kim M.S. // Nat. Rev. Phys. 2021. V. 3. P. 589. arXiv:2102.00992v2 [quantum-ph].
  26. 26. Zielinska J.A., van der Laan F., Norrman A. et al. // Phys. Rev. Lett. 2024. V. 132. P. 253601. arXiv:2310.03706v1 [physics.optics].
  27. 27. Stephenson F.R., Morrison L.V., Hohenkerk C. // Proceedings of the Royal Society A. 2016. V. 472 (2196): 20160404
  28. 28. Klaers J., Schmitt J., Vewinger F, Weitz M. // Nature. 2010. V. 468. P. 545. [Klaers J., Schmitt J., Vewinger F., Weitz M. Bose-Einstein condensation of paraxial light / ArXiv: 1109.4023 19 Sep 2011].
  29. 29. Терлецкий Я.П. Статистическая физика. M.: Высш. Школа, 1994. 353 с.
  30. 30. Бекман И.Н. Атомная и ядерная физика: радиоактивность и ионизирующие излучения. 2-е изд. М.: Юрайт, 494 с.
  31. 31. Klapdor-Kleingrothaus H.V., Zuber K. Particle Astrophysics. CRC, Boca Raton. FL. 1997.
  32. 32. Глазков В.Н. Электродинамика и сверхпроводников. Основы микроскопии. Сверхпроводники II рода. М.: МФТИ, 2018. 40 с.
  33. 33. London F.H. // Proc. Roy. Soc. (London). 1935. V. A149. P. 71.
  34. 34. Matsushita T. Flux Pinning in Superconductors. Berlin, Heidelberg: Springer, 2014. 475 p.
  35. 35. Nakamura S., Matsumoto H., Ogawa H. et al. // Phys. Rev. Lett. 2024.V. 133. P. 036004. arXiv:2401.07397 [cond-mat.supr-con].
  36. 36. Kapitza P.L. // Nature. 1938. V. 141. № 3558. P. 74.
  37. 37. Ohba T. // Scientific Reports. 2016. V. 6. P. 28992.
  38. 38. Henshaw D.G., Woods A.D.B. // Physical Review. 1961. V. 121. P. 1266.
  39. 39. Yarmchuk E.J., Gordon M.J.V., Packard R.E. // Phys. Rev. Lett. 1979. V. 43. P. 214.
  40. 40. Bewley G.P., Lathrop D.P., Sreenivasan K.R. // Nature. 2006. V. 441:588. P. 2006.
  41. 41. Maksimenko V.V., Zagaynov V.A., Agranovski I.E. // Phys. Rev. A. 2013. V. 88. Iss. 5. P. 053823.
  42. 42. Giannelli L., Paladino E., Grajcar M. et al. // Phys. Rev. Research. 2024. V. 6. P. 013008. arXiv:2302.10973v3 [quant-ph] 4 Apr 20
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library