RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

HYDRATE FORMATION IN GAS-SATURATED LAYERS OF AMORPHOUS ICE WITH CRYSTALLINE NUCLEI

PII
S3034553725080105-1
DOI
10.7868/S3034553725080105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 8
Pages
1201-1206
Abstract
The formation of propane hydrate in gas-saturated condensates of amorphous ice in the presence of nucleated crystals has been studied. Amorphous gas-saturated layers were obtained by condensation of supersonic flows of rarefied vapor and gas on a liquid nitrogen cooled substrate. Samples were prepared using both parallel flows with orientation normal to the substrate and at an angle to it towards each other. The formation of ice nanocrystals during adiabatic expansion of the vapor flow at the supersonic nozzle exit ensured their presence in the condensates. Changes in the specific surface density (porosity) of amorphous gas-saturated condensates at changing the orientation of flows with respect to the substrate and the presence of nucleated crystals in nonequilibrium condensates affect their stability and crystallization kinetics. Under conditions of deep metastability, a spontaneous crystallization mode with the capture of adsorbed gas molecules and the formation of gas hydrate is realized. The crystallized condensates contained high gas content exceeding its value for hydrate in the equilibrium state. Excessive gas content indicates the presence of gas in the intergranular space and porous medium of the sample.
Keywords
газовые гидраты фазовая метастабильность кристаллизация
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Файзуллин М.З., Коверда В.П. // Журн. физ. химии. 2012. Т. 86. № 2. С. 229.
  2. 2. Коверда В.П., Богданов Н.М., Скрипов В.П. // Там же. 1983. Т. 57. № 11. С. 2798.
  3. 3. Файзуллин М.З., Виноградов А.В., Томин А.С., Коверда В.П. // Докл. РАН. 2017. Т. 472. № 6. С. 645.
  4. 4. Файзуллин М.З., Виноградов А.В., Томин А.С., Коверда В.П. // ТВТ. 2019. Т. 57. № 5. С. 769.
  5. 5. Torchet G., Schwartz J., Farges J., de Feraudy M.F., et el. // J. Chem. Phys. 1983. V. 79. № 12. P. 6196.
  6. 6. Sloan E.D. // Nature (London). 2003. V. 426. P. 6964.
  7. 7. Dontsov V.E., Chernov A.A. // Int. J. Heat Mass Transfer. 2009. V. 52. P. 4919.
  8. 8. Chernov A.A. Pil'nik A.A., Elistratov D.S., et el. // Scientific Reports. 2017. V. 7. P. 40809.
  9. 9. Chernov A.A., Elistratov D.S., Mezentsev I.V., et el. // Int. J. Heat and Mass Transfer. 2017. V. 108. P. 1320.
  10. 10. Faizullin M.Z., Vinogradov A.V., Koverda V.P. // Chem. Eng. Sci. 2015. V. 130. P. 135.
  11. 11. Faizullin M.Z., Skokov V.N., Koverda V.P. // J. Non-Cryst. Solids. 2010. V. 356. № 23–24. P. 1153.
  12. 12. Файзуллин М.З., Виноградов А.В., Скоков В.Н., Коверда В.П. // Журн. физ. химии. 2014. Т. 88. № 10. С. 1706.
  13. 13. Yakushev V.S., Istomin V.A. // Physics and Chemistry of Ice. Maeno N., Hondolff. (Eds.) Hokkaido: University Press, Sapporo, 1992. P. 136.
  14. 14. Stern L.A., Circone S., Kirby S.H., Durham W.B. // J. Phys. Chem. 2021. B. 105. P. 1756.
  15. 15. Stevenson K.P., Kimmel G.A., Dohnalek Z., et el. // Science. 1999. V. 283. P. 1505.
  16. 16. Kimmel G.A., Stevenson K.P., Dohnalek Z., et el. // J. Chem. Phys. 2001. V. 114. № 12. P. 5284.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library