- PII
- S3034553725080105-1
- DOI
- 10.7868/S3034553725080105
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 8
- Pages
- 1201-1206
- Abstract
- The formation of propane hydrate in gas-saturated condensates of amorphous ice in the presence of nucleated crystals has been studied. Amorphous gas-saturated layers were obtained by condensation of supersonic flows of rarefied vapor and gas on a liquid nitrogen cooled substrate. Samples were prepared using both parallel flows with orientation normal to the substrate and at an angle to it towards each other. The formation of ice nanocrystals during adiabatic expansion of the vapor flow at the supersonic nozzle exit ensured their presence in the condensates. Changes in the specific surface density (porosity) of amorphous gas-saturated condensates at changing the orientation of flows with respect to the substrate and the presence of nucleated crystals in nonequilibrium condensates affect their stability and crystallization kinetics. Under conditions of deep metastability, a spontaneous crystallization mode with the capture of adsorbed gas molecules and the formation of gas hydrate is realized. The crystallized condensates contained high gas content exceeding its value for hydrate in the equilibrium state. Excessive gas content indicates the presence of gas in the intergranular space and porous medium of the sample.
- Keywords
- газовые гидраты фазовая метастабильность кристаллизация
- Date of publication
- 01.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 24
References
- 1. Файзуллин М.З., Коверда В.П. // Журн. физ. химии. 2012. Т. 86. № 2. С. 229.
- 2. Коверда В.П., Богданов Н.М., Скрипов В.П. // Там же. 1983. Т. 57. № 11. С. 2798.
- 3. Файзуллин М.З., Виноградов А.В., Томин А.С., Коверда В.П. // Докл. РАН. 2017. Т. 472. № 6. С. 645.
- 4. Файзуллин М.З., Виноградов А.В., Томин А.С., Коверда В.П. // ТВТ. 2019. Т. 57. № 5. С. 769.
- 5. Torchet G., Schwartz J., Farges J., de Feraudy M.F., et el. // J. Chem. Phys. 1983. V. 79. № 12. P. 6196.
- 6. Sloan E.D. // Nature (London). 2003. V. 426. P. 6964.
- 7. Dontsov V.E., Chernov A.A. // Int. J. Heat Mass Transfer. 2009. V. 52. P. 4919.
- 8. Chernov A.A. Pil'nik A.A., Elistratov D.S., et el. // Scientific Reports. 2017. V. 7. P. 40809.
- 9. Chernov A.A., Elistratov D.S., Mezentsev I.V., et el. // Int. J. Heat and Mass Transfer. 2017. V. 108. P. 1320.
- 10. Faizullin M.Z., Vinogradov A.V., Koverda V.P. // Chem. Eng. Sci. 2015. V. 130. P. 135.
- 11. Faizullin M.Z., Skokov V.N., Koverda V.P. // J. Non-Cryst. Solids. 2010. V. 356. № 23–24. P. 1153.
- 12. Файзуллин М.З., Виноградов А.В., Скоков В.Н., Коверда В.П. // Журн. физ. химии. 2014. Т. 88. № 10. С. 1706.
- 13. Yakushev V.S., Istomin V.A. // Physics and Chemistry of Ice. Maeno N., Hondolff. (Eds.) Hokkaido: University Press, Sapporo, 1992. P. 136.
- 14. Stern L.A., Circone S., Kirby S.H., Durham W.B. // J. Phys. Chem. 2021. B. 105. P. 1756.
- 15. Stevenson K.P., Kimmel G.A., Dohnalek Z., et el. // Science. 1999. V. 283. P. 1505.
- 16. Kimmel G.A., Stevenson K.P., Dohnalek Z., et el. // J. Chem. Phys. 2001. V. 114. № 12. P. 5284.