RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

HYDROGEN PRODUCTION FROM OXALIC ACID ON TANTALUM-CONTAINING COMPOSITES UNDER IRRADIATION UV AND VISIBLE LIGHT

PII
S3034553725080206-1
DOI
10.7868/S3034553725080206
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 8
Pages
1272-1282
Abstract
The photocatalytic activity of iron-containing composites based on silicon nitride, obtained in the combustion mode of ferrosilicon aluminum (FSA) with various Ta additives (5, 10, 15%), was investigated for hydrogen production from aqueous solutions of HCO under UV and visible light irradiation. X-ray diffraction method revealed that the main phases of the ceramic matrix of the composites are β-SiN and α-Fe, along with the presence of the semiconductor phase TaON. The morphological features of the samples were studied using electron microscopy. The composite synthesized from FSA with 10% Ta exhibited the highest photocatalytic activity, attributed to its optimal composite structure of SiN-TaON-Fe. The mechanisms of HCO adsorption and photocatalytic generation of H from HCO were investigated on Ta-containing composites synthesized from FSA and a mixture of elemental powders (silicon, aluminum) with 10% Ta in the absence and with the addition of HO. It was established that the dependence of photocatalytic H evolution on the concentration of HCO allows the use of the Langmuir-Hinshelwood model. The highest H generation rate (6.34 μmol·min) from HCO is achieved in the presence of HO on the iron-containing composite, which is due to the participation of both heterogeneous and homogeneous photocatalytic processes.
Keywords
фотокатализ металлокерамические композиты оксонитрид тантала получение водорода щавелевая кислота
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
24

References

  1. 1. Ashfaq Z., Iqbal T., Ali H. et al. // Arab. J. Chem. 2023. V. 16. № 9. P. 105024. https://doi.org/10.1016/j.arabjc.2023.105024
  2. 2. Джабиев Т.С., Авдеева Л.В., Савиных Т.А., Джабиева З.М. // Журн. физ. химии. 2022. Т. 96, № 1. С. 138.
  3. 3. Ullah H., Asif Ali T., Salma B., Tapas K.M. // Appl. Catal. B Environ. 2018. V. 229. P. 24. DOI: 10.1016/j.apcatb.2018.02.001
  4. 4. Hitoki G., Ishikawa A., Takata T., N Kondo J. et al. // Chem. Lett. 2002. V. 31. № 7. P. 736. https://DOI.org/10.1246/cl.2002.736
  5. 5. Kasahara A., Nukumizu K., Hitoki G., Takata T. // J. Phys. Chem. A. 2002. V. 106. № 29. P. 6750. DOI: 10.1021/jp025961+
  6. 6. Matoba T., Maeda K., Domen K. // Chem. Eur. J. 2011. Vol. 17, № 52. P. 14731. https://DOI.org/10.1002/chem.201102970
  7. 7. Xu J., Chengi P., Takata T. Domen K. // Chem. Commun. 2015. V. 51. № 33. P. 7191. https://DOI.org/10.1039/C5CC01728A
  8. 8. Fang C.M., Orhan E., de Wijs G.A., Hintzen H.T., et al. // J. Mater. Chem. 2001. V. 11. № 4. P. 1248. https://DOI.org/10.1039/B005751G
  9. 9. Artyukh I.A., Bolgaru K.A., Dychko K.A., et al. // ChemistrySelect. 2021. Vol. 6, № 37. P. 10025. DOI: 10.1002/sict.202102014
  10. 10. Wadley S., Waite T.D. Fenton Processes-Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing. 2024. P. 111.
  11. 11. Jin Q. Lu B., Pan Y., Tao X. et al. // Catal. Today. 2020. V. 358. P. 324. DOI: 10.1016/j.cattod.2019.12.006
  12. 12. Chen T., Guopeng W., Feng Z., Hu G. // Chin. J. Catal. 2008. V. 29. № 2. P. 105. DOI: 10.1016/S1872-2067(08)60019-4
  13. 13. Roncaroli F., Bless M.A. // J. Colloid Interface Sci. 2011. V. 356. № 1. P. 227. DOI: 10.1016/j.jcis.2010.11.051
  14. 14. Franch M.I., A Ayllon J., Peral J., Domènech X. // Catal. Today. 2002. V. 76. № 2–4. P. 221. DOI: 10.1016/S0920-5861(02)00221-3
  15. 15. AlSalka Y., Al-Madanat O., Hakki A., Bahnemann D.W. // Catalysts. 2021. V. 11. № 12. P. 1423. https://DOI.org/10.3390/catal11121423
  16. 16. Gritsenko V.A. // Uspekhi Fiz. Nauk. 2012. V. 182. № 5. P. 531. DOI: 10.3367/UFNr.0182.201205d.0531
  17. 17. Орлов В.М., Седнева Т.А. // Перспективные материалы. 2017. T. 1. C. 5.
  18. 18. Filоnov A.B., Migas D. B., Shaposhnikov V.L., Borisenko V.E., et al. // J. Appl. Phys. 1998. V. 83. № 8. P. 4410. https://DOI.org/10.1063/1.367220
  19. 19. Skvortsova L.N., Kazantseva K.I., Bolgaru K.A., et al. // Inorg. Mater. 2023. V. 59. № 3. P. 321. DOI: 10.1134/S0020168523030123
  20. 20. Goldstein S., Rabani J. // J. Photochem. Photobiol. A. 2008. V. 193. № 1. P. 50. DOI: 10.1016/j.jphotochem.2007.06.006
  21. 21. Hatchard C.G., Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A.1956. V. 235. № 1203. P. 518. DOI: 10.1098/rspa.1956.0102
  22. 22. Rabani J., Mannane H., Pousty D., Bolton J.R. // Practical Chemical Actinometry—A Review. Photochem. Photobiol., 2021. V. 97. № 5. P. 873. DOI: 10.1111/php.13429
  23. 23. Pilz F.H., Lindner J., Vöhringer P. // Phys. Chem. Chem. Phys. 2019. V. 21. № 43. P. 23803. DOI: 10.1039/C9CP052331
  24. 24. Hision K.A., Bolton J.R. // Environ. Sci. Technol. 1999. V. 33. № 18. P. 3119. https://DOI.org/10.1021/e9810134
  25. 25. Ohtani B. // Chem. Lett. 2008. V. 37. № 3. P. 216. https://DOI.org/10.1246/cl.2008.216
  26. 26. AlSalka Y., Al-Madanat O., Hakki A., Bahnemann D.W. // Catalysts. 2021. V. 11. № 12. P. 1423. https://DOI.org/10.3390/catal11121423
  27. 27. Doudrick K., Monzon O., Mangonon A., et al. // J. Environ. Eng. 2011. V. 138. № 8. P. 852. DOI: 10.1061/(ASCE)EE.1943-7870.0000529
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library