- PII
- S30345537S0044453725040014-1
- DOI
- 10.7868/S3034553725040014
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 4
- Pages
- 529-536
- Abstract
- Electron paramagnetic resonance (EPR) is a widely used instrumental research method in chemistry, physics, biology, and materials science that can be successfully applied to characterize the electronic structure of carbon nanomaterials. This work presents a brief review of studies of various types of carbon nanostructures (CNS) by EPR, including measurement techniques, principles of spectral data processing and interpretation, and experimental results. The relationship between the properties of CNS and the nearest environment of paramagnetic centers, oxidation, and degradation of materials with time is analyzed.
- Keywords
- оксиды графена углеродные нанотрубки малослойные графеновые фрагменты электронный парамагнитный резонанс
- Date of publication
- 15.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 22
References
- 1. B. Wang W., Likodimos V., Fielding A.J. et al. // Carbon N.Y. 2020. V. 160. P. 236.
- 2. Kempiński M. // Mater. Lett. 2018. V. 230. P. 180.
- 3. Sun Y., Wang X., Tang B. et al. // Mater. Lett. 2017. V. 189. P. 54.
- 4. Fei Y., Fang S., Hu Y.H. // Chem. Eng. J. 2020. V. 397. P. 125408.
- 5. Tiwari S., Purabgola A., Kandasubramanian B. // J. Alloys Compd. 2020. V. 825. P. 153954.
- 6. Xia H., Wang Y., Lin J. et al. // Nanoscale Res. Lett. 2012. V. 7. P. 33.
- 7. Chen X., Wang L., Li W. et al. // Nano Res. 2013. V. 6. P. 619.
- 8. Lebepe T.C., Parani S., Vuyelwa N. et al. // Mater. Lett. 2020. V. 279. P. 128470.
- 9. Wang W., Yokoyama A., Liao S. et al. // Mater. Sci. Eng. C. 2008. V. 28. P. 1082.
- 10. Vidhya M.S., Ravi G., Yuvakkumar R. et al. // Mater. Lett. 2020. V. 276. P. 128193.
- 11. Wang C., Fu Q., Wen D. // Zeitschrift Fur Phys. Chemie. 2018. V. 232. P. 1647.
- 12. Moreno-Castilla C., Maldonado-Hódar F.J. // Carbon N.Y. 2005. V. 43. P. 455.
- 13. Lee K.S., Phiri I., Park C.W. et al. // Mater. Lett. 2020. V. 275. P. 128133.
- 14. Kumar M., Chauhan H., Satpati B. et al. // Zeitschrift Fur Phys. Chemie. 2019. V. 233. P. 85.
- 15. Gong Y., Ping Y., Li D. et al. // Appl. Surf. Sci. 2017. V. 397. P. 213.
- 16. Yu Q., Dong T., Qiu R. et al. // Mater. Res. Bull. 2021. V. 138. P. 111211.
- 17. Ershadi M., Javanbakht M., Mozaffari S.A. et al. // J. Alloys Compd. 2020. V. 818. P. 152912.
- 18. Ampadu E.K., Kim J., Oh E. et al. // Mater. Lett. 2020. V. 277. P. 128323.
- 19. Li J.L., Bai G.Z., Feng J.W. et al. // Carbon N.Y. 2005. V. 43. P. 2649.
- 20. Soo L.T., Loh K.S., Mohamad A.B. et al. // J. Alloys Compd. 2016. V. 677. P. 112.
- 21. Chernyak S.A., Ivanov A.S., Stolbov D.N. et al. // Appl. Surf. Sci. 2019. V. 488. P. 51.
- 22. Kapteijn F., Moulijn J.A., Matzner S. et al. // Carbon N.Y. 1999. V. 37. P. 1143.
- 23. Chernyak S.A., Ivanov A.S., Strokova N.E. et al. // J. Phys. Chem. C. 2016. V. 120. P. 17465.
- 24. Sun M., Zhang G., Liu H. et al. // Sci. China Mater. 2015. V. 58. P. 683.
- 25. Li Y., Ai C., Deng S. et al. // Mater. Res. Bull. 2021. V. 134. P. 111094.
- 26. Duraisamy V., Krishnan R., Kumar S.M.S. // Mater. Res. Bull. 12022. V. 49. P. 111729.
- 27. Diamantopoulou Α., Glenis S., Zolnierkiwicz G. et al. // J. Appl. Phys. 2017. V. 121. P. 043906.
- 28. Augustyniak-Jabłokow M.A., Strzelczyk R., Fedaruk R. // Carbon N.Y. 2020. V. 168. P. 665.
- 29. Tadyszak K., Chybczyńska K., Ławniczak P. et al. // J. Magn. Magn. Mater. 2019. V. 492. P. 165656.
- 30. Ćirić L., Sienkiewicz A., Djokić D.M. et al. // Phys. Status Solidi Basic Res. 2010. V. 247. P. 2958.
- 31. Cirić L., Sienkiewicz A., Gaál R. et al. // Phys. Rev. B. 2012. V. 86. P. 195138.
- 32. Kempiński M., Los S., Florczak P. et al. // Appl. Phys. Lett. 2018. V. 113. P. 084102.
- 33. Ulyanov A., Stolbov D., Savilov S. // Zeitschrift Für Phys. Chemie. 2022. V. 236. P. 79.
- 34. Ulyanov A.N., Maslakov K.I., Savilov S.V. et al. // Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2023. V. 287. P. 116119.
- 35. Savilov S.V., Ulyanov A.N., Desyatov A.V. et al. // Solid State Sci. 2022. V. 132. P. 106996.
- 36. Savilov S., Suslova E., Epishev V. et al. // Nanomaterials. 2021. V. 11. P. 352.
- 37. Cao M., Du C., Guo H. et al. // Compos. Part A Appl. Sci. Manuf. 2018. V. 115. P. 331.
- 38. Ulyanov A.N., Suslova E.V., Savilov S.V. // Mendeleev Commun. 2023. V. 33. P. 127.
- 39. Kempiński M., Śliwińska-Bartkowiak M., Kempiński W. // Rev. Adv. Mater. Sci. 2007. V. 14. P. 163.
- 40. Szirmai P., Márkus B.G., Dóra B. et al. // Phys. Rev. B. 2017. V. 96. P. 075133.
- 41. Joly V.L.J., Takahara K., Takai K. et al. // Ibid. B. 2010. V. 81. P. 115408.
- 42. Ramakrishna Matte H.S.S., Subrahmanyam K.S., Rao C.N.R. // Phys. Chem. C. 2009. V. 113. P. 9982.
- 43. Yazyev O.V., Helm L. // Phys. Rev. B. 2007. V. 75. P. 125408.
- 44. Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M. et al. // Phys. Status Solidi - Rapid Res. Lett. 2011. V. 5. P. 271.
- 45. Пул Ч., Техника ЭПР-спектроскопии. М. Мир, 1970. 549 с.
- 46. Ulyanov A.N., Quang H.D., Pismenova N.E. et al. // Solid State Commun. 2012. V. 152. P. 1556.
- 47. Ulyanov A.N., Suslova E.V., Maslakov K.I. et al. // Funct. Mater. Lett. 2022. V. 15. P. 2251040.
- 48. Singh C., Nikhil S., Jana A. et al. // Chem. Commun. 2016. V. 52. P. 12661.
- 49. Lin T.T., Lai W.H., Lü Q.F. et al. // Electrochim. Acta. 2015. V. 178. P. 517.
- 50. Huang Y.H., Liao C.S., Wang Z.M. et al. // Phys. Rev. B. 2002. V. 65. P. 184423.
- 51. Wang B., Fielding A.J., Dryfe R.A.W. et al. // J. Phys. Chem. C. 2019. V. 123. P. 22556.
- 52. Ulyanov A.N., Yang D.S., Mazur A.S. et al. J. Appl. Phys. 2011. V. 109. P. 123928.
- 53. Ghosh A., Pinto J.W.M., Frota H.O. // J. Magn. Reson. 2013. V. 227. P. 87.