- PII
- S30345537S0044453725040023-1
- DOI
- 10.7868/S3034553725040023
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 99 / Issue number 4
- Pages
- 537-548
- Abstract
- The heat capacity of lutetium titanate was measured in the temperature range 2-1869 K and the smoothed temperature dependences of heat capacity entropy enthalpy changes and reduced Gibbs energy were calculated. The presence of a gentle anomaly in the heat capacity of Lu2Ti2O7 in the low temperature range was confirmed and its parameters were determined. Based on the calculated values of Gibbs energy thermodynamic stability in the studied temperature range was estimated.
- Keywords
- титанат лютеций теплоемкость термодинамика
- Date of publication
- 15.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 19
References
- 1. Knop O., Brisse F., Castelliz L. // Can. J. Chem. 1969. V. 47. P. 971. https://doi.org/10.1139/v69-155
- 2. Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786 (83)90001-8
- 3. Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. doi:10.1016/j.surfcoat.2010.08.151
- 4. Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
- 5. Steiner H.-J., Middleton P.H., Steele B.C.H. // J. Alloys Compd. 1993. V.190. P. 279. https://doi.org/10.1016/0925-8388 (93)90412-G
- 6. Bonville P., Petit S., Mirebeau I., et al. // J. Phys.: Cond. Matter. 2013. V. 25(27). P. 275601. doi: 10.1088/0953-8984/25/27/275601
- 7. Kim H.G., Hwang D.W., Bae S.W., et al. // Catal. Lett. 2003. V. 91. P. 193. https://doi.org/10.1023/B: CATL.0000007154.30343.23
- 8. Yadav P.K., Upadhyay Ch. // J. Supercond. Novel Magn. 2019. V. 32. P. 2267. https://doi.org/10.1007/s10948-018-4957-4
- 9. Balachandran U., Eror N.G. // J. Mater. Res. 1989. V. 4(6). P. 1525. doi: 10.1557/JMR.1989.1525
- 10. Johnson D.A., Westrum E.F., Jr. // Thermochim. Acta. 1994. V. 245. P. 173. https://doi.org/10.1016/0040-6031 (94)85077-1
- 11. Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489. doi: https://doi.org/10.1103/PhysRevB.59.14489
- 12. 12. Ramirez A.P., Shastry B.S., Hayashi A., et al. // Phys. Rev. Lett. 2002. V. 89(6). P. 067202-1. doi: 10.1103/PhysRevLett.89.067202
- 13. Saha S., Singh S., Dkhil B., et al. // Phys. Rev. B. 2008. V. 78. P. 214102. doi: 10.1103/PhysRevB.78.214102
- 14. Bissengalieva M.R., Knyazev A.V., Bespyatov M.A., et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.106646
- 15. Dasgupta P., Jana Y.M., Nag Chattopadhyay A., et al. // J. Phys. Chem. Solids. 2007. V. 68. P. 347. https://doi.org/10.1016/j.jpcs.2006.11.022
- 16. Gagarin P.G., Guskov A.V., Khoroshilov A.V., et al. // Russ. J. Phys. Chem. A. 2024. V. 98, No. 9. P. 1883. doi: 10.1134/S0036024424700973
- 17. Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55. No. 5. P. 477. doi: 10.1134/S0020168519050029
- 18. Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. doi: 10.1016/j.jssc.2004.01.009
- 19. Reznitskii L.A. // Neorg. Mater. 1993. V. 29 (9). P. 1310.
- 20. Gagarin, P. G., Guskov, A. V., Guskov, et al. // Russ. J. of Inorganic Chemistry. https://doi.org/10.1134/S0036023624602046
- 21. Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn.2020. V. 141. P. 105974. doi: https://doi.org/10.1016/j.jct.2019.105974
- 22. Bissengaliyeva M.R., Gogol D.B., Taymasova Sh.T., Bekturganov N.S. // J. Chem. Eng. Data. 2011. V. 56. P. 195-204. https://doi.org/10.1021/je100658y
- 23. Prohaska T., Irrgeher J., Benefield J., et al. // Pure and Applied Chemistry. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
- 24. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- 25. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- 26. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029.
- 27. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. doi:10.1016/j.tca.2009.08.002
- 28. Smith S.J., Stevens R., Liu Sh., et al. // Am. Mineral. 2009. V. 94. P. 236. doi: 10.2138/am.2009.3050236
- 29. Konings R.J.M., Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. doi: 10.1063/1.4825256
- 30. Ryumin M.A., Tyurin A.V., Khoroshilov A.V., et al. // Russ. J. Inorg. Chem. 2024. doi: 10.1134/S0036023624601132.
- 31. Westrum E.F. // J. Chem. Thermodynamics. 1983. V. 15. P. 305-325. https://doi.org/10.1016/0021-9614 (83)90060-5
- 32. Kitagawa K., Higashinaka R., Ishida K., et al. // Phys. Rev. B. 2008. V. 77. P. 214403. doi: 10.1103/PhysRevB.77.214403
- 33. Gruber J., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76(9). P. 4600-4605. https://doi.org/10.1063/1.443538
- 34. Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Russ. J. Phys. Chem. A. 2022. V. 96(9). P. 1831. doi: 10.1134/S003602442209014X
- 35. Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Dokl. Phys. Chem. 2021. V. 500. Part 2. P. 105-109. doi: 10.1134/S001250162110002X