RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

PECULIARITIES OF CORROSION OF LOW-CARBON STEEL IN THE FLOW OF SOLUTIONS OF ACIDS OF DIFFERENT ANIONIC COMPOSITION CONTAINING IRON(III) SALTS

PII
S30345537S0044453725040049-1
DOI
10.7868/S3034553725040049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 4
Pages
554-568
Abstract
Corrosion of low-carbon steel in solutions of HCl, HCl + H3PO4, and H3PO4 containing Fe(III) salts is studied. In the systems involved, the corrosion of steel results from its reaction with the acid solution and Fe(III) salt. In the discussed media, partial reactions of anodic ionization of iron, cathodic reduction of H+ and Fe(III) cations are realized on steel. The first two reactions are characterized by kinetic control, and the latter is characterized by diffusion control. The accelerating effect of Fe(III) cations on steel corrosion in the media studied is predominantly due to Fe(III) reduction. Binding of Fe(III) cations into complex compounds with anions of the corrosive medium reduces the value of their diffusion coefficient (DFe(III)). The value of DFe(III) is maximum in the HCl solution and minimum in the H3PO4 solution. The rate of partial cathodic reduction reaction of Fe(III) is determined by the value of DFe(III). As a result, the accelerating effect of Fe(III) on the cathodic reaction and, hence, the general corrosion of steel in the flow of aggressive medium is most significant in the HCl solution and least significant in the H3PO4 solution.
Keywords
конвекция диффузионная кинетика кислотная коррозия низкоуглеродистая сталь соляная кислота хлорид железа(Ш) фосфорная кислота фосфат железа(Ш)
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Батраков В.В., Батраков В.П., Пивоварова Л.И., Соболь В.В. Коррозия конструкционных материалов. Газы и неорганические кислоты. Справочное издание. В двух книгах. Кн. 2. Неорганические кислоты. 2-е изд., перераб. и доп. М.: Интермет Инжиниронг, 2000. 320 с.
  2. 2. Verma C., Quraishi M.A., Ebenso E.E. // Int. J. Corros. Scale Inhib. 2020. V. 9. № 4. P. 1261. doi: 10.17675/2305-6894-2020-9-4-5.
  3. 3. Meroufel A.A. / In: Corrosion and Fouling Control in Desalination Industry. Eds. V.S. Saji, A.A. Meroufel, A.A. Sorour. Springer. Cham. 2020. P. 209. doi: 10.1007/978-3-030-34284-5_10
  4. 4. Авдеев Я.Г., Кузнецов Ю.И. // Журн. физ. химии. 2023. Т. 97. № 3. C. 305. doi: 10.31857/S0044453723030056.@@ Avdeev Ya.G., Kuznetsov Yu.I. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 413. doi: 10.1134/S0036024423030056.
  5. 5. Finšgar M., Jackson J. // Corros. Sci. 2014. V. 86, P. 17. doi: 10.1016/j.corsci.2014.04.044.
  6. 6. Avdeev Ya.G., Andreeva T.E., Panova A.V., Kuznetsov Yu.I. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 1. P. 139. doi: 10.17675/2305-6894-2019-8-1-12.
  7. 7. Авдеев Я.Г., Панова А.В., Андреева Т.Э. // Журн. физ. хим. 2023. Т. 97. № 5. C. 730. doi: 10.31857/S0044453723050059.@@ Avdeev Ya.G., Panova A.V., Andreeva T.E. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1018. doi: 10.1134/S0036024423050059.
  8. 8. Richardson J.A., Bhuiyan M.S.H. / In: Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. 21 p. doi: 10.1016/B978-0-12-803581-8.10372-8.
  9. 9. Richardson J.A. / In: Shreir’s Corrosion. Eds. B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott. Elsevier. 2010. P. 1207. doi: 10.1016/B978-044452787-5.00197-9.
  10. 10. Кузин А.В., Горичев И.Г., Шелонцев В.А., и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 2021. V. 62. № 6. С. 515.@@ Kuzin A.V., Gorichev I.G., Shelontsev V.A., et al. // Moscow Univ. Chem. Bull. 2021. V. 76. P. 398. doi: 10.3103/S0027131421060055.
  11. 11. Кеше Г. Коррозия металлов. Физико-химические принципы и актуальные проблемы. / Пер. с нем. под. ред. акад. Я.М. Колотыркина. М.: Металлургия, 1984. 132 с.
  12. 12. Плетнев М.А., Решетников С.М. // Защита металлов. 2004. Т. 40. № 5. С. 513.@@ Pletnev M.A., Reshetnikov S.M. // Prot. Met. 2004. V. 40. P. 460-467. doi: 10.1023/B: PROM.0000043064.20548.e0
  13. 13. Антропов Л.И. Теоретическая электрохимия. М.: Высш. школа, 1965. С. 348.
  14. 14. Bockris J.O’M., Drazic D., Despic A.R. // Electrochim. Acta. 1961. V. 4. № 2-4. P. 325. doi: 10.1016/0013-4686(61)80026-1.
  15. 15. Chin R.J., Nobe K. // J. Electrochem. Soc. 1972. V. 119. P. 1457. doi: 10.1149/1.2404023.
  16. 16. Florianovich G.M., Sokolova L.A.. Kolotyrkin Ya.M. // Electrochim. Acta. 1967. V. 12. № 7. P. 879. doi: 10.1016/0013-4686(67)80124-5.
  17. 17. Решетников С.М., Макарова Л.Л. Окислительно-восстановительные и адсорбционные процессы на поверхности твердых металлов. Ижевск: Удмуртский гос. ун-т. 1979. С. 25.
  18. 18. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2021. Т. 95. № 6. С. 885.doi: 10.31857/S0044453721060029.@@ Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2021. V. 95. № . 6. P. 1128. doi: 10.1134/S0036024421060029
  19. 19. Захаров В.А., Сонгина О.А., Бектурова Г.Б. // Журн. аналит. химии. 1976. Т. 31. № 11. С. 2212.
  20. 20. Avdeev Ya.G., Andreeva T.E., Panova A.V., Yurasova E.N. // Int. J. Corros. Scale Inhib. 2019. V. 8. № 2. P. 411. doi: 10.17675/2305-6894-2019-8-2-18.
  21. 21. Belqat B., Laghzizil A., Elkacimi K., et al. // J. of Fluorine Chem. 2000. V. 105. № 1. P. 1. doi: 10.1016/S0022-1139(00)00256-6.
  22. 22. Techniques of electrochemistry: Electrode Processes. V. 1. / Eds.: E. Yeager and A.J. Salkind. New York: Published by John Wiley & Sons Inc, 1972. 592 p.
  23. 23. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. С. 255.
  24. 24. Strahm U., Patel R.C., Matijevic E. // J. Phys. Chem. 1979. V. 83. № 13. P. 1689. doi: 10.1021/j100476a003
  25. 25. Kim, M.S., Kim, C.H. and Sohn, Y.S. // J. of the Korean Chemical Society. 1975. V. 19. № 5. P. 325.
  26. 26. Wilhelmy R.B., Patel R.C., Matijevic E. // Inorg. Chem. 1985. V. 24. № 20. P. 3290. doi: 10.1021/ic00214a039
  27. 27. Филатова Н.Л., Вендило А.Г., Санду Р.А. // Журн. неорг. химии. 2012. Т. 57. № 9. С. 1355.@@ Filatova L.N., Vendilo A.G., Sandu R.A. // Russ. J. Inorg. Chem. 2012. V. 57. № 9. P. 1272. doi: 10.1134/S0036023612090057
  28. 28. Плэмбек Дж. Электрохимические методы анализа. Пер. с англ. М.: Мир, 1985. 496 с.
  29. 29. Авдеев Я.Г., Андреева Т.Э. // Журн. физ. химии. 2022. Т. 96. № 2. C. 281.doi: 10.31857/S0044453722020030.@@ Avdeev Ya.G., Andreeva T.E. // Russ. J. Phys. Chem. A. 2022. V. 96. № 2. P. 423. doi: 10.1134/S0036024422020030
  30. 30. Решетников С.М. Ингибиторы кислотной коррозии металлов. Л.: Химия, 1986. 144 с.
  31. 31. Плесков Ю.В., Филиновский В.Ю. Вращающийся дисковый электрод. М: Наука, 1972. 344 с.
  32. 32. Du C., Tan Q., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 171. doi: 10.1016/B978-0-444-63278-4.00005-7.
  33. 33. Jia Z., Yin G., Zhang J. / In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Eds. W. Xing, G. Yin, J. Zhang, Elsevier B.V. All rights reserved. 2014. P. 199. doi: 10.1016/B978-0-444-63278-4.00006-9.
  34. 34. Справочник химика. Т. 3. Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. 2-е изд. / Под. ред. Б.П. Никольского. М.-Л.: Химия, 1965. С. 715.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library