RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

QUANTUM-CHEMICAL STUDY OF ENERGIES OF MALEIMIDE AND ITACONIMIDE ISOMERIC DERIVATIVES

PII
S30345537S0044453725040098-1
DOI
10.7868/S3034553725040098
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 99 / Issue number 4
Pages
605-610
Abstract
For 38 pairs of the isomeric derivatives of maleimide and itaconimide, the Gibbs free energies were calculated using the density functional theory (DFT) and domain-based local pair natural orbital (DLPNO) methods. The effects of the solvent and of substituents in positions 1, 3, and 4 of the maleimide ring on the energy difference of the isomers were studied. Depending on the substituents and conditions, the equilibrium can shift toward the maleimide or itaconimide form. Further migration of the double bond and cis-trans- isomerism were also considered wherever possible.
Keywords
теория функционала плотности DFT DLPNO малеимид итаконимид изомеризация
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Ravasco J.M.J.M., Faustino H., Trindade A., Gois P.M.P. // Chem. Eur. J. 2019. V. 25. P. 43.
  2. 2. Elschner T., Obst F., Heinze T. // Macromol. Biosci. 2018. V. 18. P. 1800258.
  3. 3. Wei K., Wen G., Zhao Y. et al. // J. Mater. Chem. C. 2016. V. 41(4). P. 9804.
  4. 4. Oz Y., Sanyal A. // Chem. Rec. 2018. V. 18. P. 570.
  5. 5. Aqueveque P., Anke T., Sterner O. // Zeitschrift für Naturforschung C. 2002. V. 57(3-4). P. 257.
  6. 6. Yuan C., Yang H., Gong Q., et al. // Adv. Synth. Catal. 2021. V. 363. P. 3336.
  7. 7. Askri S., Edziri H., Hamouda M.B. et al. // J. Molec. Struc. 2022. V. 1250. P. 131688.
  8. 8. Albakhit S.D.Y., Mutlaq D.Z., Al-Shawi A.A.A. // Chem. Africa. 2023. V. 6. P. 2933.
  9. 9. Gherbovet O., Garcia Alvarez M.C., Bignon J., Roussi F. // J. Med. Chem. 2016. V. 59(23). P. 10774.
  10. 10. Galanti M.C., Galanti A.V. // J. Org. Chem. 1982. V. 47(8). P. 1572.
  11. 11. Paramonova P., Sharonova T., Kalinin S., et al. // Mendeleev Commun. 2022. V. 32(2). P. 176.
  12. 12. Haval K.P., Argade N.P. // J. Org. Chem. 2008. V. 73. P. 6936.
  13. 13. Inyutina A., Kantin G., Dar′in D., Krasavin M. // J. Org. Chem. 2021. V. 86. P. 13673.
  14. 14. Laha D., Meher K.B., Bankar O.S., et al. // Asian J. Org. Chem. 2022. V. 11, e202200062.
  15. 15. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73.
  16. 16. Weigend F., Ahlrichs, R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
  17. 17. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
  18. 18. Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102(11). P. 1995.
  19. 19. Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101.
  20. 20. Huang X., Sha F. // J. Org. Chem. 2008. V. 73. P. 1173.
  21. 21. Chupakhin E., Gecht M., Ivanov A. et al. // Synthesis. 2021. V. 53(07). P. 1292.
  22. 22. Панов А.А. // Докл.РАН. Химия, науки о материалах. 2023. Т. 508(1). С. 111. @@ Panov A.A. // Doklady Phys. Chem. 2023. V. 508(2). P. 28.
  23. 23. Chupakhin E., Kantin G., Dar’in D., Krasavin M. // Mendeleev Commun. 2022. V. 32. P. 382.
  24. 24. Inyutina A., Dar’in D., Kantina G., Krasavin M. // Org. Biomol. Chem. 2021. V. 19. P. 5068.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library