ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Модифицированная добавками оксидов металлов керамика ниобата калия-натрия: синтез, микроструктура и свойства

Код статьи
10.31857/S0044453723010144-1
DOI
10.31857/S0044453723010144
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 97 / Номер выпуска 1
Страницы
95-100
Аннотация
Методом твердофазного синтеза получены однофазные керамические образцы новых составов (1 ‒ x)(K0.5Na0.5)NbO3 – xLa(Ag0.5Sb0.5)O3 (x = 0–0.15), модифицированные добавками оксидов металлов ZnO, CuO, MnO2 и изучены их кристаллическая структура, микроструктура, диэлектрические и сегнетоэлектрические свойства. Установлено формирование фазы со структурой перовскита с ромбической элементарной ячейкой во всех синтезированных образцах. Сегнетоэлектрические фазовые переходы подтверждены методами диэлектрической спектроскопии и генерации второй гармоники лазерного излучения и выявлено понижение температуры фазовых переходов из сегнетоэлектрической ромбической фазы в сегнетоэлектрическую тетрагональную, затем – в кубическую параэлектрическую фазу.
Ключевые слова
ниобат калия-натрия керамика структура перовскита диэлектрические свойства
Дата публикации
13.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Gupta V., Sharma M., and Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227.
  2. 2. Sodano H.A., Henry A., Inman D.J., and Park G. // Ibid. 2005. V. 16. P. 799.
  3. 3. Sodano H.A., Park G., and Inman D.J. Estimation of electric charge output for piezoelectric energy harvesting // Strain. 2004. V. 40. P. 49.
  4. 4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. Москва: Химия, 1985, 256 с.
  5. 5. Eitel R.E., Randall C.A., Shrout T.R., and Park S.-E. // Jpn. J. Appl. Phys. 2002. V. 41. Part 1. P. 2099.
  6. 6. Eitel R.E., Zhang S.J., Shrout T.R. et al. // J. Appl. Phys. 2004. V. 96. P. 2828.
  7. 7. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Letters. 2005. V. 86. P. 262904.
  8. 8. Iniguez J., Vandebilt D., and Bellaiche L. // Phys. Rev. B. 2003. V. 67. P. 224I07–1.
  9. 9. Maeder M.D., Damjanovic D., and Setter N. // J. Electroceram. 2004. V. 13. P. 385.
  10. 10. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84.
  11. 11. Takenaka T., Nagata H., Hiruma Y. et al. // J. Electroceram. 2007. V. 19. P. 259.
  12. 12. Takenaka T., Nagata H., and Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787.
  13. 13. Rödel J., Jo W., Seifert T.P., Anton E.-M. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153.
  14. 14. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049.
  15. 15. Zhen Y.H. and Li J.F. // J. Am. Ceram. Soc. 2006. V. 89. P. 3669.
  16. 16. Bernard J., Bencan A., Rojac T. et al. // Ibid. 2008. V. 91. P. 2409.
  17. 17. Guo Y., Kakimoto K.-I., and Ohsato H. // Appl. Phys. Lett. 2004. V. 85. P. 4121.
  18. 18. Ming B.Q., Wang J.F., Qi P., and Zang G.Z. // J. Appl. Phys. 2007. V. 101. P. 054103.
  19. 19. Wang K. and Li J.F. // Adv. Funct. Mater. 2010. V. 20. P. 1924.
  20. 20. Singh K.C., Jiten C., Laishram R. et al. // J. Alloy. Compd. 2010. V. 496. P. 717.
  21. 21. Zhao P., Zhang B. P., and Li J.F. // J. Am. Ceram. Soc. 2008. V. 91. P. 1690.
  22. 22. Jiang X.P., Yang Q., Yu Z.D. et al. // J. Alloy Compd. 2010 V. 493. P. 276.
  23. 23. Lin D., Kwok K.W., and Chan H.L.W. // J. Appl. Phys. 2009. V. 106. P. 034102.
  24. 24. Yoon M.S., Khansur N.H., Lee W.J. et al. // J. Advanced Materials Research. 2011. V. 287–290. P. 801.
  25. 25. Sun X., Chen J., Yu R. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 130.
  26. 26. Sun X., Deng J., Sun C. et al. // J. Am. Ceram. Soc. 2009. V. 92. № 8. P. 1853.
  27. 27. Hao J., Xu Z., Chua R. et al. // Materials Chemistry and Physics. 2009. V. 118. Issue 1. P. 229.
  28. 28. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. of Advanced Dielectrics. 2018. V. 8. № 1. P. 1850004.
  29. 29. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45.
  30. 30. Kim J.-W., Ryu J., Hahn B.-D. et al. // J. of the Korean Physical Society. 2013. V. 63. № 12. P. 2296.
  31. 31. Политова Е.Д., Калева Г.М., Мосунов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1156.
  32. 32. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Diffusion Foundations. 2020. V. 27. P. 90.
  33. 33. Kumar R., Kumar A., Singh S. // Sustainable Energy Fuels. 2018. V. 2. P. 2698.
  34. 34. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56.
  35. 35. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Там же. 2018. Т. 37. № 1. С. 76.
  36. 36. Lee H.J, Zhang S.H. Lead-Free Piezoelectrics. N.Y.: Springer, 2012. 291 p.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека