RAS Chemistry & Material ScienceЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Express Search and Characterization of Nitro Compounds via Visualization Mass Spectrometry

PII
10.31857/S0044453723110262-1
DOI
10.31857/S0044453723110262
Publication type
Status
Published
Authors
Volume/ Edition
Volume 97 / Issue number 11
Pages
1655-1659
Abstract
The authors describe a way of detecting nitro and amino compounds using a mass spectrometer with laser desorption/ionization. This allows analysis of nitro- and amino compounds from a metal surface without sample preparation at levels of up to 5 ng/cm2 relative to paracetamol. Sensitivity is at the level of modern means of analysis, and the procedure is simple and fast. It is also universal and can be modified to search for other nitro- and amino compounds. Pointwise quantitative analysis can be done using an external standard. The dynamic range is 1.5–2 orders of magnitude. The technique can be used to analyze metal surfaces for nitro-paint residues and traces of explosive compounds.
Keywords
нитрофенол динитрофенол масс-спектрометрия поверхностной лазерной десорбции/ионизации парацетамол 2-метилпирролидон масс-спектрометрическая визуализация
Date of publication
13.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Caulkins J.P., Gould A., Pardo B. et al. // Annu. Rev. Criminol. 2021. V. 4. P. 353–375.
  2. 2. Galante N., Franceschetti L., Del Sordo S. // Forensic Sci. Med. Pathol. 2021. V. 17. № 3. P. 437–448.
  3. 3. Lehmann E.L., Arruda M.A.Z. // Anal. Chim. Acta. 2019. V. 1063. P. 9–17.
  4. 4. Cunha R.L., Oliveira C.D.S.L., de Oliveira A.L. et al. // Microchem. J. 2021. V. 163. P. 105895.
  5. 5. Suppajariyawat P., Gonzalez-Rodriguez J. // Sci. Justice. 2021. V. 61. № 6. P. 697–703.
  6. 6. Ryan D.J., Spraggins J.M., Caprioli R.M. et al. // Curr. Opin. Chem. Biol. 2019. V. 48. P. 64–72.
  7. 7. Morisasa M., Sato T., Kimura K. et al. // Foods. 2019. V. 8. № 12. P. 633.
  8. 8. Spraggins J.M., Djambazova K.V., Rivera E.S. et al. // Anal. Chem. 2019. V. 91. № 22. P. 14552–14560.
  9. 9. Lee P.Y., Yeoh Y., Omar N. et al. // Crit. Rev. Clin. Lab. Sci. 2021. V. 58. № 7. P. 513–529.
  10. 10. Basu S.S., Regan M.S., Randall E.C. et al. // NPJ Precis. Oncol. 2019. V. 3 № 1. P. 17.
  11. 11. Iartsev S.D., Matyushin D.D., Pytskii I.S. et al. // Surf. Innov. 2018. V. 6. № 4–5. P. 244–249.
  12. 12. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2022. V. 96. № 5. P. 1070–1076.
  13. 13. Pytskii I.S., Minenkova I.V., Kuznetsova E.S. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1227–1237.
  14. 14. Hoong Y.B., Pizzi A., Chuah L.A. Harun J. // Int. J. Adhes. Adhes. 2015. V. 63. P. 117–123.
  15. 15. Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Russ. J. Phys. Chem. A. 2021. V. 95. P. 2319–2324.
  16. 16. Wang X., Liu Y., Wang Q. et al. // Spectrochim. 2021. V. 244. P. 118876.
  17. 17. Wang J., Qiu C., Mu X. et al. // Talanta. 2020. V. 210. P. 120631.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library