- Код статьи
- S0044453725020205-1
- DOI
- 10.31857/S0044453725020205
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 99 / Номер выпуска 2
- Страницы
- 331-338
- Аннотация
- Исследована электрохимическая реакция восстановления нитритов (NO2–RR) в нейтральном водном электролите, имеющая важное применение, как для будущих процессов синтеза аммиака, так и для эффективной очистки сточных и сельскохозяйственных сбросов. Проведено сравнение каталитической активности (получены результаты выхода по току (Фарадеевской эффективности) и скорости образования аммиака) для благородного (платина) и неблагородного (кобальт) металлов. Электродами-катализаторами служили металлические поликристаллические платина и кобальт. Поверхность катализаторов была проанализирована при помощи сканирующей и оптической микроскопии. Метод потенциодинамических кривых служил для предварительного выявления потенциала синтеза аммиака и оценки плотности тока синтеза. Были получены значения выхода по току (Фарадеевская эффективность, FE) и скорость образования аммиака при выбранных пяти значениях плотностей тока. Было обнаружено, что более эффективным является кобальтовый катод (FE ≈ 99%, скорость образования (NH3) = 2.4 мкмоль ч–1 см–2), что превышает значения для платинового катода (FE = 88.1%, скорость образования (NH3) = 0.4 мкмоль ч–1 см–2). Была определена электрохимически активная поверхность рабочих электродов-катализаторов. Объяснение такой активности катализаторов дано согласно результатам работы, которые демонстрируют, что катод из неблагородного металла может быть более эффективным для NO2–RR, чем платиновый катод.
- Ключевые слова
- электрокатализ восстановление нитритов платиновый катализатор кобальтовый катализатор экологическая химия
- Дата публикации
- 12.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 7
Библиография
- 1. Makepeace J.W., He T., Weidenthaler C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 7746. https://doi.org/10.1016/j.ijhydene.2019.01.144
- 2. John J., MacFarlane D.R., Simonov A.N. // Nat. Catal. 2023. V. 6. P. 1125. https://doi.org/10.1038/s41929-023-01060-w
- 3. Lebedeva O., Kultin D., Каlenchuk A., Кustov L. // Curr. Opin. Electrochem. 2023. V. 38. P. 101207. https://doi.org/10.1016/j.coelec.2022.101207
- 4. Imamura K., Kubota J. // Sustainable Energy Fuels. 2019. V. 3. Р. 1406. https://doi.org/10.1039/C9SE00049F.
- 5. Shao J., Jing H., Wei P. et al. // Nat. Energy. 2023. V. 8. Р. 1273. https://doi.org/10.1038/s41560-023-01386-6
- 6. Murphy E., Liu Y., Matanovic I. et al. // Nat. Commun. 2023. V. 14. Р. 4554. https://doi.org/10.1038/s41467-023-40174-4
- 7. Bai L., Franco F., Timoshenko J. et al. // J. Am. Chem. Soc. 2024. V. 146. Р. 9665. https://doi.org/10.1021/jacs.3c13288
- 8. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
- 9. Kuznetsova I., Lebedeva O., Kultin D. et al. // Int. J. Mol. Sci. 2024. V. 25. Р. 7089. https://doi.org/10.3390/ijms25137089
- 10. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
- 11. Petrii O.A., Safonova T.Ya. // J. Electroanal. Chem. 1992. V. 331. Р. 897. https://doi.org/10.1016/0022-0728 (92)85013-S
- 12. Xiang J., Qiang C., Shang S. et al. // Adv. Funct. Materials. 2024. Р. 2401941. https://doi.org/10.1002/adfm.202401941
- 13. Zhao H., Xiang J., Sun Z. et al. // ACS Sustainable Chem. Eng. 2024. V. 12. Р. 2783. https://doi.org/10.1021/acssuschemeng.3c07388
- 14. Wang F., Xiang J., Zhang G. et al. // Nano Res. 2024. V. 17. Р. 3660. https://doi.org/10.1007/s12274-023-6261-2
- 15. Wang F., Zhao H., Zhang G. et al. // Adv. Funct. Materials. 2024. V. 34. Р. 2308072. https://doi.org/10.1002/adfm.202308072
- 16. Wang F., Shang S., Sun Z. et al. // Chem. Eng. J. 2024. V. 489. Р. 151410. https://doi.org/10.1016/j.cej.2024.151410
- 17. Xiang J., Zhao H., Chen K. et al. // J. Colloid Interface Sci. 2024. V. 653. Р. 390. https://doi.org/10.1016/j.jcis.2023.09.095
- 18. Xiang J., Zhao H., Chen K. et al. // Ibid. 2024. V. 659. Р. 432. https://doi.org/10.1016/j.jcis.2024.01.013
- 19. Wan Y., Du W., Chen K. et al. // Ibid. 2023. V. 652. Р. 2180. https://doi.org/10.1016/j.jcis.2023.09.071
- 20. Wu T., Zhang F., Wang J. et al. // Dalton Trans. 2024. V. 53. Р. 877. https://doi.org/10.1039/D3DT03808D
- 21. Li Y., Ouyang L., Chen J. et al. // J. Colloid Interface Sci. 2024. V. 663. Р. 405. https://doi.org/10.1016/j.jcis.2024.02.153
- 22. Qu Y., Guo Y., Chu K. // Inorg. Chem. 2024. V. 63. Р. 78. https://doi.org/10.1021/acs.inorgchem.3c04194
- 23. Zhang Y., Wan Y., Liu X. et al. // iScience. 2023. V. 26. Р. 107944. https://doi.org/10.1016/j.isci.2023.107944
- 24. Dima G.E., De Vooys A.C.A., Koper M.T.M. // J. Electroanal. Chem. 2003. V. 554–555. Р. 15. https://doi.org/10.1016/S0022-0728 (02)01443-2
- 25. De Groot M.T., Koper M.T.M. // J. Electroanal. Chem. 2004. V. 562. Р. 81. https://doi.org/10.1016/j.jelechem.2003.08.011
- 26. Lebedeva O., Zakharov V., Kuznetsova I. et al. // Chem. – Eur. J. 2024. V. 30. Р. e202402075. https://doi.org/10.1002/chem.202402075
- 27. Adalder A., Mitra K., Barman N. et al. // ChemRxiv. 2024. https://doi.org/10.26434/chemrxiv-2024-v8chs