ОХНМЖурнал физической химии Russian Journal of Physical Chemistry

  • ISSN (Print) 0044-4537
  • ISSN (Online) 3034-5537

Сравнение каталитических свойств Pt- и Co-катодов в реакции восстановления нитритов до аммиака

Код статьи
S0044453725020205-1
DOI
10.31857/S0044453725020205
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 99 / Номер выпуска 2
Страницы
331-338
Аннотация
Исследована электрохимическая реакция восстановления нитритов (NO2–RR) в нейтральном водном электролите, имеющая важное применение, как для будущих процессов синтеза аммиака, так и для эффективной очистки сточных и сельскохозяйственных сбросов. Проведено сравнение каталитической активности (получены результаты выхода по току (Фарадеевской эффективности) и скорости образования аммиака) для благородного (платина) и неблагородного (кобальт) металлов. Электродами-катализаторами служили металлические поликристаллические платина и кобальт. Поверхность катализаторов была проанализирована при помощи сканирующей и оптической микроскопии. Метод потенциодинамических кривых служил для предварительного выявления потенциала синтеза аммиака и оценки плотности тока синтеза. Были получены значения выхода по току (Фарадеевская эффективность, FE) и скорость образования аммиака при выбранных пяти значениях плотностей тока. Было обнаружено, что более эффективным является кобальтовый катод (FE ≈ 99%, скорость образования (NH3) = 2.4 мкмоль ч–1 см–2), что превышает значения для платинового катода (FE = 88.1%, скорость образования (NH3) = 0.4 мкмоль ч–1 см–2). Была определена электрохимически активная поверхность рабочих электродов-катализаторов. Объяснение такой активности катализаторов дано согласно результатам работы, которые демонстрируют, что катод из неблагородного металла может быть более эффективным для NO2–RR, чем платиновый катод.
Ключевые слова
электрокатализ восстановление нитритов платиновый катализатор кобальтовый катализатор экологическая химия
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
11

Библиография

  1. 1. Makepeace J.W., He T., Weidenthaler C. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 7746. https://doi.org/10.1016/j.ijhydene.2019.01.144
  2. 2. John J., MacFarlane D.R., Simonov A.N. // Nat. Catal. 2023. V. 6. P. 1125. https://doi.org/10.1038/s41929-023-01060-w
  3. 3. Lebedeva O., Kultin D., Каlenchuk A., Кustov L. // Curr. Opin. Electrochem. 2023. V. 38. P. 101207. https://doi.org/10.1016/j.coelec.2022.101207
  4. 4. Imamura K., Kubota J. // Sustainable Energy Fuels. 2019. V. 3. Р. 1406. https://doi.org/10.1039/C9SE00049F.
  5. 5. Shao J., Jing H., Wei P. et al. // Nat. Energy. 2023. V. 8. Р. 1273. https://doi.org/10.1038/s41560-023-01386-6
  6. 6. Murphy E., Liu Y., Matanovic I. et al. // Nat. Commun. 2023. V. 14. Р. 4554. https://doi.org/10.1038/s41467-023-40174-4
  7. 7. Bai L., Franco F., Timoshenko J. et al. // J. Am. Chem. Soc. 2024. V. 146. Р. 9665. https://doi.org/10.1021/jacs.3c13288
  8. 8. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
  9. 9. Kuznetsova I., Lebedeva O., Kultin D. et al. // Int. J. Mol. Sci. 2024. V. 25. Р. 7089. https://doi.org/10.3390/ijms25137089
  10. 10. Jiang Z., Wang Y., Lin Z. et al. // Energy Environ. Sci. 2023. V. 16. Р. 2239. https://doi.org/10.1039/D2EE03502B
  11. 11. Petrii O.A., Safonova T.Ya. // J. Electroanal. Chem. 1992. V. 331. Р. 897. https://doi.org/10.1016/0022-0728 (92)85013-S
  12. 12. Xiang J., Qiang C., Shang S. et al. // Adv. Funct. Materials. 2024. Р. 2401941. https://doi.org/10.1002/adfm.202401941
  13. 13. Zhao H., Xiang J., Sun Z. et al. // ACS Sustainable Chem. Eng. 2024. V. 12. Р. 2783. https://doi.org/10.1021/acssuschemeng.3c07388
  14. 14. Wang F., Xiang J., Zhang G. et al. // Nano Res. 2024. V. 17. Р. 3660. https://doi.org/10.1007/s12274-023-6261-2
  15. 15. Wang F., Zhao H., Zhang G. et al. // Adv. Funct. Materials. 2024. V. 34. Р. 2308072. https://doi.org/10.1002/adfm.202308072
  16. 16. Wang F., Shang S., Sun Z. et al. // Chem. Eng. J. 2024. V. 489. Р. 151410. https://doi.org/10.1016/j.cej.2024.151410
  17. 17. Xiang J., Zhao H., Chen K. et al. // J. Colloid Interface Sci. 2024. V. 653. Р. 390. https://doi.org/10.1016/j.jcis.2023.09.095
  18. 18. Xiang J., Zhao H., Chen K. et al. // Ibid. 2024. V. 659. Р. 432. https://doi.org/10.1016/j.jcis.2024.01.013
  19. 19. Wan Y., Du W., Chen K. et al. // Ibid. 2023. V. 652. Р. 2180. https://doi.org/10.1016/j.jcis.2023.09.071
  20. 20. Wu T., Zhang F., Wang J. et al. // Dalton Trans. 2024. V. 53. Р. 877. https://doi.org/10.1039/D3DT03808D
  21. 21. Li Y., Ouyang L., Chen J. et al. // J. Colloid Interface Sci. 2024. V. 663. Р. 405. https://doi.org/10.1016/j.jcis.2024.02.153
  22. 22. Qu Y., Guo Y., Chu K. // Inorg. Chem. 2024. V. 63. Р. 78. https://doi.org/10.1021/acs.inorgchem.3c04194
  23. 23. Zhang Y., Wan Y., Liu X. et al. // iScience. 2023. V. 26. Р. 107944. https://doi.org/10.1016/j.isci.2023.107944
  24. 24. Dima G.E., De Vooys A.C.A., Koper M.T.M. // J. Electroanal. Chem. 2003. V. 554–555. Р. 15. https://doi.org/10.1016/S0022-0728 (02)01443-2
  25. 25. De Groot M.T., Koper M.T.M. // J. Electroanal. Chem. 2004. V. 562. Р. 81. https://doi.org/10.1016/j.jelechem.2003.08.011
  26. 26. Lebedeva O., Zakharov V., Kuznetsova I. et al. // Chem. – Eur. J. 2024. V. 30. Р. e202402075. https://doi.org/10.1002/chem.202402075
  27. 27. Adalder A., Mitra K., Barman N. et al. // ChemRxiv. 2024. https://doi.org/10.26434/chemrxiv-2024-v8chs
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека